

Null terminated char arrays and cstring

● we very often want to read/write text in programs
● arrays of characters are a natural way to store text
● arrays need to be declared of some fixed size, but when we ask
user to type in a name/word/sentence/etc we don't know how
much text they will enter
● we create an array we think/hope is big enough, fill the
beginning of it with text they enter, then add a special character as
a marker, showing the end of what they typed
● anything in the array after the marker isn't “in use” at the moment

ONLY FOR ARRAYS OF CHAR

● the things we are discussing today are based on a widely-
accepted convention for working with arrays of char
– they do not work on other kinds of arrays (int, float, etc)
– they do not work on other kinds of arrays (int, float, etc)

– they do not work on other kinds of arrays (int, float, etc)

– they do not work on other kinds of arrays (int, float, etc)
– they do not work on other kinds of arrays (int, float, etc)
– ...

The null terminator

● characters in C++ are represented using the ascii
character codes (see www.asciitable.com for list)

● 128 possible characters, each with its own corresponding
integer code (from 0 to 127)

● most characters we can type at the keyboard are in range
32-127

● the character chosen as the special marker in char arrays
is the one with ascii code 0, aka NULL

● can specify any character through it's ascii code using
'\xxx', e.g. '\0' for NULL, '\32' for space, '\65' for “A', etc

Input with null terminators

● cin and scanf can read a word into a char array
– skips whitespace in front then reading the “word” as all

characters before the next whitespace

– adds a '\0' as the first character after what was read/stored
 char arrayname[SIZE];

 scanf(“%s”, arrayname); // note no & used

 cin >> arrayname;

● risk: neither one checks to make sure the text + null will
actually fit in the given array

Reading entire lines

● sometimes want to read a whole line, including whitespace
● <cstdio> we use fgets, specifying stdin as input source
 char text[SIZE];

 fgets(text, size, stdin);

● <iostream> we use getline, specifying cin as input source
 cin.getline(text)

● or, with slightly different syntax, read into a C++ string
 string s;

 getline(cin, s);

Not skipping whitespace

● sometimes we want to read a character without skipping
whitespace

● <cstdio> we can use the getc function
 char ch = getc(stdin);

● <iostream> uses the noskipws flag
 cin >> noskipws >> ch;

Output with null terminators

● cout and printf can each display contents of character
array, assuming that there is a '\0' present indicating where
to stop the output

 cout << arrayname;

 printf(“%s”, arrayname);

● risk: if no '\0' is present then they go “off the end” of the
array, and keep printing until they happen to hit a byte in
memory containing a 0

Manually writing null term strings

● we can explicitly write content for a null terminated string:
 arr[0] = 'a';

 arr[1] = 'b';

 arr[2] = ' ';

 arr[3] = 'x';

 arr[4] = '\0';

 cout << arr; // prints “ab x”

 arr[0] = '\0';

 cout << arr; // prints nothing, an empty string

chars and ++, --

● ++, -- work on chars too, e.g.
● char c = 'a';
● c++; // c now has 'b'
● uses the ascii codes to decide

which char is next (e.g. 'a' has
code 65, 'b' has code 66

char text[15];
int i = 0;
char c = 'a';

while (i < 10) {
 text[i] = ch;
 i++; // moves to next arr pos
 ch++; // switch to next ascii char
}

// note i is 10 when we get out of loop
text[i] = '\0'; // puts null term in next spot
cout << text << endl;
// displays abcdefghij

cstring library

● the <cstring> library provides a variety of functions that
work on null-terminated arrays of char
– assuming str, str1, str2 are arrays of char, and N is array size

– strlen(str) // returns count of # chars before the '\0'

– strcpy(str1,str2) // copies str2 into str1
– strcat(str1,str2) // copies str2 onto end of str1

– strncpy(str1,str2,N) // strcpy but at most N chars

– strncat(str1, str2, N) // strcat but at most N chars

● each of them correctly adds the '\0' in right spot

Example:

const int SIZE = 64;
char name1[SIZE];
char name2[SIZE];
char fullname[SIZE];

cout << “Enter first name”;
cin >> name1; // suppose they enter “scoobert”
cout << “Enter second name”;
cin >> name2; // suppose they enter “doo”

strcpy(fullname, name1); // fullname is now “scoobert” then a '\0'
strcat(fullname, “, ”); // fullname now “scoobert, “ then a '\0'
strcat(fullname, name2); // fullname now “scoobert, doo” then a '\0'
cout << “The full name is: “ << fullname; // prints “scoobert, doo”
int L = strlen(fullname); // L would be 13, counts all the characters before the null

strcmp, strncmp

● we can also compare text
“alphabetically” (actually using the
order characters appear in the
ascii table)

● strcmp(str1, str2) returns 0 if the
contents are the same (up to the
null terminator), a negative
number if str1 comes before str2
“alphabetically”, a positive number
otherwise

● strncmp(str1, str2, n) similar, but
only checks first n chars

const int size = 10;
char str1[size];
char str2[size];

cin >> str1 >> str2;

if (strcmp(str1, str2) == 0) {
 cout << “they are the same” << endl;
} else if (strcmp(str1, str2) < 0) {
 cout << str1 << “ comes first” << endl;
} else {
 cout << str2 << “ comes first” << endl;
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

