Null terminated char arrays and cstring

e we very often want to read/write text in programs
e arrays of characters are a natural way to store text

e arrays need to be declared of some fixed size, but when we ask
user to type in a name/word/sentence/etc we don't know how
much text they will enter

e we create an array we think/hope is big enough, fill the
beginning of it with text they enter, then add a special character as
a marker, showing the end of what they typed

« anything in the array after the marker isn't “in use” at the moment

ONLY FOR ARRAYS OF CHAR

 the things we are discussing today are based on a widely-
accepted convention for working with arrays of char

they do not work on other kinds of arrays (int, float, etc)
they do not work on other kinds of arrays (int, float, etc)
they do not work on other kinds of arrays (int, float, etc)
they do not work on other kinds of arrays (int, float, etc)

they do not work on other kinds of arrays (int, float, etc)

The null terminator

characters in C++ are represented using the ascii
character codes (see www.asciitable.com for list)

128 possible characters, each with its own corresponding
integer code (from 0 to 127)

most characters we can type at the keyboard are in range
32-127

the character chosen as the special marker in char arrays
IS the one with ascii code 0, aka NULL

can specify any character through it's ascii code using
"xxx', e.g. \O' for NULL, \32' for space, "\65' for “A’, etc

Input with null terminators

 cin and scanf can read a word into a char array

- skips whitespace in front then reading the “word” as all
characters before the next whitespace

- adds a '\O' as the first character after what was read/stored
char arrayname[SIZE];

scanf(“%s”, arrayname); // note no & used

cin >> arrayname;

* risk: neither one checks to make sure the text + null will
actually fit in the given array

Reading entire lines

 sometimes want to read a whole line, including whitespace

e <cstdio> we use fgets, specifying stdin as input source
char text[SIZE];
fgets(text, size, stdin);

e <iostream> we use getline, specifying cin as input source
cin.getline(text)

« or, with slightly different syntax, read into a C++ string
string s;
getline(cin, s);

Not skipping whitespace

 sometimes we want to read a character without skipping
whitespace

» <cstdio> we can use the getc function
char ch = getc(stdin);

» <iostream> uses the noskipws flag
cin >> noskipws >> ch;

Output with null terminators

« cout and printf can each display contents of character
array, assuming that there is a \O' present indicating where
to stop the output

cout << arrayname;
printf(“%s”, arrayname);

 risk: if no \O' is present then they go “off the end” of the
array, and keep printing until they happen to hit a byte in
memory containinga 0

Manually writing null term strings

e we can explicitly write content for a null terminated string:

arr[0] = 'a';

arr[1l] = 'b';

arr[2] = " ';

arr[3] = "x';

arr[4] = "\0';

cout << arr; // prints “ab x”
arr[0] = "\0';

cout << arr; // prints nothing, an empty string

chars and ++, --

++ -- work on chars too, e.qg.
charc="'a’;
c++; // c now has 'b’

uses the ascii codes to decide
which char is next (e.g. 'a’' has
code 65, 'b' has code 66

char text[15];
inti=0;
charc ="a"

while (i < 10) {
text[i] = ch;
i++; /[moves to next arr pos
ch++; // switch to next ascii char

}

/[note i is 10 when we get out of loop
text[i] = \O'; // puts null term in next spot
cout << text << end|;

// displays abcdefghij

cstring library

» the <cstring> library provides a variety of functions that
work on null-terminated arrays of char

assuming str, str1, str2 are arrays of char, and N is array size
strlen(str) // returns count of # chars before the \O'
strcpy(str1,str2) // copies str2 into str1

strcat(str1,str2) // copies str2 onto end of str1
strncpy(str1,str2,N) // strcpy but at most N chars

strncat(str1, str2, N) // strcat but at most N chars

» each of them correctly adds the "\O' in right spot

Example:

const int SIZE = 64;
char name1[SIZE];
char name2[SIZE];
char fullname[SIZE];

cout << “Enter first name”;

cin >> name1; /] suppose they enter “scoobert”
cout << “Enter second name’;
cin >> name2; I/ suppose they enter “doo”

strcpy(fullname, name1); // fullname is now “scoobert” then a \O'
strcat(fullname, “,); /l fullname now “scoobert, “ then a \O'
strcat(fullname, name2); // fullname now “scoobert, doo” then a "0

cout << “The full name is: “ << fullname; // prints “scoobert, doo”

int L = strlen(fullname); // L would be 13, counts all the characters before the null

strcmp, strncmp

* we can also compare text
“alphabetically” (actually using the
order characters appear in the
ascii table)

« strcmp(str1, str2) returns O if the
contents are the same (up to the
null terminator), a negative
number if str1 comes before str2
“alphabetically”, a positive number
otherwise

« strncmp(str1, str2, n) similar, but
only checks first n chars

const int size = 10;
char stri[size];
char str2[size];

cin >> str1 >> str2;

if (stremp(str1, str2) == 0) {

cout << “they are the same” << end];
} else if (stremp(str1, str2) < 0) {

cout << str1 << “ comes first” << end];
} else {

cout << str2 << “ comes first” << endl;

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

