Data and computation in C++

Assuming we know the rough structure of C++ programs, let's
introduce the basics of data and computation

 data storage (constants and variables)

 data types (integers, reals, characters)

e size limits on data types

 the assignment operator

e literal ("hard-coded”) values in source code

* basic math operations and computation in C++



Data storage (variables)

e any data a program works with must be stored somewhere

« often the specific value to be used is unknown before the
program starts, or changes as the program runs

* in our programs we can specify a name for a storage
location, and the kind of data we will store there

* these named locations are referred to as variables (since
their content can vary over time)



Declaring variables

e \We must declare a variable before we can use it

* this involves specifying what kind of data it can hold, as
well as the variable name

» e.g. for a variable named “age” that can hold integer (int)
data, a valid declaration would be

1nt age;

 similarly, for a variable named “temperature” that can hold
floating point data (float), a valid declaration would be

float temperature;



Assigning values to variables

The = symbol represents the assignment operator in C++

It is used to set/change the value stored in a variable,
using the syntax

variablename = newvalue ;

the new value may simply be a literal (hard-coded) value,
e.g. 23, or it may be a complex expression

x=0QG+ (7 - / 2)) * 10;
we can assign values as part of a variable declaration
int somevariable = 5;



Basic computation

» the usual math operations are supported (+, -, *, /) with
typical order of operation rules and support for bracketing

 Instructions are processed in sequence, always using the
most recent value for a variable

int x = 3; // x has value 3

int y; // Yy has no value yet

y =10 + x; // stores 10+3, 1.e. 13, 1n vy

X =X+ 1; // computes right side, x + 1 1s 4, then
// assigns to the variable on the Tleft

int z = 5 * x; // uses latest value of x, so z = 20



The importance of initialization

e a variable has no value until one is assigned

 until that point, the value of the variable could be anything
int X;
int y = Xx; // we're using uninitialized variable x
// we really don't know what 1s 1n either variable

« compilers will often generate warning messages when
they see you are using a potentially uninitialized variable



Basic data types (char, int, float)

* There are many different data types

o first, we'll introduce three types
- int: for storing integers (whole numbers)
- float: for storing floating point values (real numbers)
- char: for storing single characters (e.g. 'x' or 'X' or '?')

« We'll introduce more complex data types as the course
progresses



Size limits of data types

« Each data type has a fixed amount of space allocated for it
In computer memory

(on our system, 1 byte for a char, 4 for an int, 4 for a float)
e This means only a limited “size” of value can be stored

(on our system, the largest int is 214783647,

the largest float is 3.40282 x 10%)



Literal values and their downside

* We can code specific int, float, or char values directly into
our C++ programs, e.g.
circumf = 3.1415 * diameter;

» these values (like 3.1415 above) are called literal values

» downside for maintainability:

- if we use the same literal value multiple times in a program then
later decide we need to change the value, we must find and
correctly edit each instance of it (without accidentally changing

anything else)



Constants, why they're useful

 instead of using these fixed, or constant, literal values
(often called “magic numbers” by programmers), we can
give the value a name and use that instead

 const float Pi = 3.1415:

« now we can use the value by name
circumf = P1 * diameter;

* this makes our code more readable and maintainable



Mixing data types in assignment

 if we assign an integer value to a floating point variable,
the results are generally intuitive

float x = 3; // x will hold 3.0
 if we assign a (small enough) floating point value to an
iInteger, the results will be truncated
inty =2.9; // y will hold 2




Mixing data types in operations

* when the compiler sees an expression like “x + y”, the
compiler must decide what kind of addition to use (most
computer chips have different circuitry to add integers than
to add floating point values)

 if x and y are both integers then it uses integer addition,
but if one or both are floats then it uses floating point
addition

« 3+ 10 gives an integer result, 13
« 3.0 + 10 gives a floating point result, 13.0



int versus float division

* integer division in C++ drops any remainder
- 7/ 3 gives 2 (dropping the remainder, 1)
- 6/ 11 gives 0 (dropping the remainder, 6)
 floating point division computes the full result
- 3.0/4 gives 0.75

 if you wish to know the remainder in integer division you
must use the modulo (%) operator

- 7 % 3 gives 1
- 6 % 11 gives 6



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

