

Top-down design and modularity

● functions can be used to design programs that are more easily
understood and easier to maintain/modify in the future
● the function takes a (possibly complex) block of code and gives it
an intuitive name/parameter list
● in the future, to execute the block of code we simply call the
function
● allows us to think of that block of code as an abstract task: we
don't need to worry about how the code inside it runs/works, we
just need to call it

Impact on readability, maintenance

● when reading the caller function, we just see the intuitive
task/function name, avoid the gory details

● when reading the called function, we just see the details
for carrying out the task, no need to see details about who
calls it and why

● if we want to change what the caller does before/after, that
has no impact on the called function

● if we want to change the details of how the called function
carries out its task, that has no impact on the caller
(assuming the called function still works)

Modularity, compartmentalization

● functions are a first step towards modular design: creating
a program of interlocking parts where the internal details of
each part are hidden from the other parts

● we agree on the role of each part: name, parameters,
return value, and the task that part should complete

● we can update any part (rewrite its internals) without
impacting any others as long as the part still ultimately
accomplishes its objectives

● allows us to design, implement, and modify the different
parts independently

Top down design

● When given a complex problem that we want to develop a
program for, use the decomposition into parts one layer at
a time

● divide the overall program into several key tasks, have a
function for each (main will call those)

● divide each of the key tasks into smaller tasks, e.g. divide
task A into smaller tasks X,Y,Z, then have the function for
task A call the functions for tasks X,Y,Z

● keep decomposing until the tasks look simple enough to
solve as single functions

Gives heirarchical design

big picture

subtask A
subtask B subtask C

little task X
little task Y

little task Z

when writing a function, we only focus on
what it needs to do/call, not any details
about what's happening inside any other
function

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

