

C++ style file I/O

● Rather than reading input from the keyboard (standard input), we
can instead choose to read from a file
● Similarly, we can write to a file instead of writing to the screen
(standard output)
● The general sequence is to get a filename, attempt to open the
file, check it succeeded, perform our I/O, then close the file
● Attempts to open a file can fail for many reasons: it isn't actually
a file, it doesn't exist, we don't have appropriate permissions, etc
● Filenames can even include the path to the file, e.g.
csci160/labex5/somedatafile

The fstream library

● the routines we'll use are in <fstream>
● if we want to read from a file, we'll create an input file

stream, which we'll later connect to a file
● if we want to write to a file, we'll create an output file

stream, which we'll later connect to a file
ifstream infile; // infile is our input stream variable

ofstream outfile; // outfile is our output stream variable

Opening a file

● we can attempt to open a file by using the open method
with our file stream variable, and providing a filename

 // infile is an input stream variable,

 // so tries to open “somefile” for reading

 infile.open(“somefile”);

 // outfile is an output stream, try to open for output

 outfile.open(“anotherfile”);

● the filename can be a text literal (like above), or it can be
stored in a string variable or a char array

examples

#include <iostream>
#include <fstream>
#include <string>
using namespace std;

int main(int argc, char *argv[])
{
 ifstream infile1, infile2, infile3;

 // try to open from a cmd line arg
 if (argc > 1) {
 infile1.open(argv[1]);
 }

// try to open from a string
string fname;
cout << “Enter a filename”;
cin >> fname;
infile2.open(fname);

// try to open from a hardcoded name
infile3.open(“someprogram.cpp”);

.......

A few attempts to open input files (without error checking so far)

Checking if the open succeeded

● variable.is_open() can be used to check if the stream
opened successfully or not, e.g.

ifstream infile;

infile.open(“somefile.txt”);

if (!infile.is_open()) {

 cout << “Sorry, could not open that file” << endl;

} else {

 ... opened ok, now we can use it and later close it ...

}

Reading from an open (input) file

● if we successfully opened a file for input then we can use
many routines much like cin, e.g.

 infile >> x; // read from the file into variable x

 getline(infile, s); // read a line into a string

● the various input methods keep track of where we are in
the file, each read picks up where the last one left off

● we can test for failed reads using .fail, e.g.
 if (infile.fail()) {

Checking for end of file

● we might hit the end of the file, the eof() method returns true
once we've done a read AFTER the last actual content

 do {

 string s;

 infile >> s;

 if (!infile.eof()) {

 cout << “read “ << s << endl;

 }

 } while (!infile.eof());

● if we forget to check for eof then we could keep re-reading the
end of the file over and over and over and ...

Closing a file when done

● When we have finished with an opened file we close it:
 infile.close();

● note that opening, checking, and closing output files works
the same as for input files, e.g.

 outfile.open(“somefilename”);

 if (!outfile.is_open()) {

 cout << “Could not open” << endl;

 } else {

 ... do stuff then ...

 outfile.close();

 }

File output

● if an output file has been successfully opened then we can
write to it much the same as with cout, e.g.

#include <fstream>
#include <iostream>
#include <string>
using namespace std;

int main()
{
 ofstream outfile;
 string s = “somefilename”;
 float f = 3.94;

 outfile.open(s);
 if (!outfile.is_open()) {
 cout << “Could not open “ << s << endl;
 } else {
 outfile << “Here is my fancy output” << endl;
 outfile << “F is “ << f << endl;
 outfile.close();
 }
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

