

Creating our own functions

● so far we have just used existing library functions
● we can create our own functions for use within a program
● we'll need to provide definitions that include
● the name of the function
● it's return type (what kind of data does it return when done)
● the types and order of expected parameters
● the code the function will run when called
● the value the function will return

Declaration syntax

● C++ has a fixed syntax for defining a function
retType funcName (paramtype paramName, ptype2 pName2)

{

 // code statements function will execute

 return value;

}

Example: average of three params

● here is a sample function to compute the average of three
floats passed to it

 float average(float num1, float num2, float num3)

 {

 // we can refer to the params by name

 float total = num1 + num2 + num3;

 return (total/3); // the result to be sent back

 }

● and here is a sample call to the function
 x = average(10, 3.7, 204);

Parameters

● the average function knew it expected three parameters,
and that within the function it would refer to the first one as
num1, the second as num2, the third as num3

● the caller passes any three values - the first gets stored in
the function's num1, the second in num2, the third in num3

 float a = 10, b = 20, c = 30;

 float result;

 result = average(a, b, c);

● a's value gets copied to num1, b's to num2, c's to num3

Return values

● the function specifies what type of data it will return (e.g.
float) and anywhere in the function it can have a return
statement that sends back a value of that type, e.g.

 return 217.5 * x + 7;

● when a return statement runs, the function immediately
ends and sends back the value

● the value returned must be ok for the return type specified
by the function

Example: multiple calls

#include <iostream>

using namespace std;

int sub1(int x)

{

 int result = x - 1;

 return x

}

int main()
{
 int a = 10;
 int b = 200;
 int c = sub1(a); // returns 9 to c
 c = sub1(b); // returns 199 to c
 a = sub1(c); // returns 198 to c
}

Code standards
● to help keep our code readable and maintainable (by

ourselves and others), we adhere to certain standards in
the layout of our code and naming of code elements
– use meaningful names for variables, functions, constants, etc to

clarify their purpose
– consistently indent each statement (code and comment) inside

a function or the main routine (e.g. 4 spaces)

– use blank lines to clearly divide the code into sections
– add comments to clarify named elements and code sections

● for the code standards for this course, see
csci160/courses/csci160/labs/standards.html

Prototypes/forward declaration

● prototypes are 1-line versions of our functions that tell the
compiler the function return type, name, and parameter list
but don't include the function body, e.g.

 int somefunction(float a, int b, char c);

 // note the presence of the semicolon in the prototype

● our standards will require we put forward declarations for
all functions before the main routine, and the full
implementations of the functions afterward

Example with prototypes
#include <cstdio>

float miles2kms(float miles); // calculate #kms matching specified miles

int main()

{

 float milesDist = 4.5; // starting distance in miles

 float kmDistance = miles2kms(milesDist); // converted distance

}

float miles2kms(float miles)

{

 const float mperkm = 0.623; // number of miles in one km

 float kms = miles * mperkm; // km distance corresponding to miles

 return kms;

}

Functions with no parameters

● some functions do not require parameters, e.g. consider the welcome
function below that simply gets (and returns) a number from the user

 float getNumber()

 {

 printf(“enter a number: “);

 float userEntry;

 scanf(“%f”, &userEntry);

 return userEntry;

 }

● a call could look like

 x = getNumber();

Functions with no return value

● not all functions have to return a value, consider the
welcome function below that simply displays information

 void welcome(int visits)

 {

 printf(“Welcome back!\n”);

 printf(“This is your %dth visit!\n”, visits);

 }

● such functions use a return type of void, and cannot return
data

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

