

Checking input: iostream and cstdlib

● we usually need to perform error checking on user input,
notifying the user and taking corrective actions as needed
● user might have entered the wrong type of data (e.g. entered a
text string when a number is desired)
● cin and scanf each provide support for checking this and for
clearing the invalid entry from the input stream
● user might have entered the write type of data but an “incorrect”
value (e.g. entering a negative number when a positive is needed)
● this does not require any adjustment of the input stream (since
the input operation itself was successful)

cin: checking for failed reads

● if cin fails in its attempt to read (e.g. we try to cin an int to x
but the user enters “blah”) we can detect it as follows:

 cin >> x;

 if (cin.fail()) {

 cout << “you did not enter an integer!” << endl;

 } else {

 cout << “you entered integer “ << x << endl;

 // here we could use x normally

 }

cin: clearing input stream

● if cin fails (as on the previous slide) then the “garbage”
input is still sitting in the input stream, we need to clear it
inside our “fail” case

 if (cin.fail()) {

 cin.clear(); // turns off cin's error flag

 // now let's throw away the line of input, up to 80 chars

 cin.ignore(80,'\n');

 }

example: int in specific range

// ask user for an int in the range 0 to 100, do error checking
cout << “Enter an integer from 0 to 100” << endl;
cin >> userVal;
if (cin.fail()) {
 cout << “That was not an integer, clearing input” << endl;
 cin.clear();
 cin.ignore(80, '\n');
} else if ((userVal < 0) || (userVal > 100)) {
 cout << “That was not in the range 0..100” << endl;
 // note that we do NOT clear the input here,
 // since cin did successfully read in the value
} else
 cout << x << “ is indeed in the range 0..100” << endl;
 // now do whatever with x
}

scanf: error check

● scanf does not have a “fail” check like cin, but it does
return a value telling us how many values it successfully
read into variables

● example 1:
 count = scanf(“%d”, &x);

– count will be 1 if scanf read an int to x, 0 otherwise

● example 2:
 count = scanf(“%d %d”, &x, &y);

– scanf will be 2 if both values were read successfully, 1 if just x
was read successfully, 0 otherwise

Example: checking failed read

// ask user to enter an int, check if the read worked
printf(“Please enter an integer”);
int x, count;
count = scanf(“%d”, &x);
if (count == 0) {
 printf(“Error: that was not an integer\n”);
} else {
 printf(“You entered integer %d\n”, x);
}

scanf: clearing input

● if the user enters an invalid data type that prevents scanf
from reading then we need to clear that from the input

● we do this by reading/discarding one “word” of text
● a special format string allows us to do this, “%*s”, e.g.
 scanf(“%*s”); // reads and discards one word of input

example: input in specific range

printf(“Enter an integer from 0 to 100\n”);
int userVal, inputCount;
inputCount = scanf(“%d”, &userVal);

if (inputCount == 0) {
 printf(“That was not an integer, discarding input\n”);
 scanf(“%*s);
}

else if ((userVal < 0) || (userVal > 100)) {
 printf(“Your value, %d, was outside range 0-100\n”, userVal);
 // note we do NOT do a scanf *s here, scanf did read in the int
}

else {
 printf(“Correct, %d is in the range 0-100\n”, userVal);
 // and we could then use the value normally
}

Read strings to avoid input failure

● an alternative approach is to read the user input as text
(rather than as an int, float, etc) so that the input operation
always succeeds

● the program can then check if the entered text has the
desired format, and if so it can attempt to convert to the
desired data type

● (we'll visit this in detail when we get to character arrays
and when we look at the string class)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

