Linked list implementation

What we're trying to create:

e suppose we want to maintain a list of circles in a 2d plane, each
having x and y coordinates and a radius (all real numbers)

« we want to keep the circles in the order they were entered
* the list of circles could grow to any size
* we want to be able to add a circle

e we want to be able to print all the circles in a specific size range,
e.g. all the circles with radius between 10 and 15, or between 0.5
and 1.6, etc

Chosen implementation approach

* we look at the requirements, and choose a linked list
approach since

- the number of circles could vary tremendously (not good for an
array approach)

- we don't need to find circles by their position in the list (which
would have been slow in a linked list approach)

|dentify needed data and functions

« our struct will need real numbers for x, y, and radius, plus a
pointer for the next circle in the list

« our program will need to keep pointers for the first and last
circles in the list

« we'll want functions to
- create a new circle with given x,y,radius values

- insert the new circle at the back of the list

- search from the front of the list, printing all circles in a given
radius (between passed rMin and rMax values)

Set data types and function profiles

e decide on the names and types for our circle struct
struct Circle { double x, y, radius; Circle *next; };

e decide on the names, parameter lists and return types for
our functions

// allocate new circle with given stats, return pointer to it

Circle* create(double x, double y, double r);

// insert at back, update back ptr, return true iff successful

bool insert(Circle* &back, Circle *newcirc);

// search forward from front, printing all

// circles found with radius between minRand and maxRad

void search(Circle* front, double minRad, double maxRad);

|dentify supporting functions/data

« we'll need some way to get commands from the user and
either insert, search, or quit based on the command

- possibly constants for the three command types
- a function to get/return the user's next command

const char Quit ='Q";
const char Insert ='I";
const char Search ='S";

// prompt the user and get their chosen command,
// repeating until a valid command is obtained

// return the valid command

char getCommand();

Support functions continued

 we'll need a function to deallocate the list when done
void deallocate(Circle* &front);

 we'll need some way to get three numeric values from the
user to pass to the create function

- a function to get/return a positive number

I/ display the prompt and read the user's value

/I repeating until a positive number is provided
/[return the final value

double getNumber(string prompt);

Implement incrementally

* implement one step at a time, compile and test after each

create skeletal versions of struct, functions, main
set up the main routine to use the functions
implement the processCommand routine
implement the getCommand routine

implement the getNumber routine

implement the create routine

Implement the insert routine

iImplement the search routine

Implement the deallocate routine

The definitions and prototypes

#include <iostream>
using namespace std;

struct Circle { _
double x, y, radius;
Circle *next;

}s

const char Quit = 'Q’';
const char Insert ='I";
const char Search ='S";

Circle* create(double x, double y, double r);

bool insert(Circle* &front, Circle* &back, Circle *newcirc);
void search(Circle* front, double minRad, double maxRad);
char getCommand();

double getNumber(string prompt);

void deallocate(Circle* &front);

// main and the full function implementations will go below here

Skeletal main and functions

// initially just the bare minimum to get them to compile

int main() { }

Circle* create(double x, double y, double r) { return NULL; }

bool insert(Circle* &f, Circle* &b, Circle *newcirc) { return false; }
void search(Circle* front, double minrRad, double maxRad) { }

char getCommand() { return Quit; }

double getNumber(string prompt) { return 0; }

void deallocate(Circle* &front) { }

Completing main

int main()

Circle *front = NULL;
Circle *back = NULL;
char cmd;
do {
cmd = getCommand();
// handle 1inserts
if (cmd == Insert) {
double x, vy, r;
X getNumber(Enter x:7);
y getNumber(“Enter y:”);
r

if (tmp != NuLL) {

}
}

insert(front, back, tmp);

= getNumber(“Enter rad1us:
Circle* tmp = create(x,y,r);

")

// handle searches
else if (cmd == Search) {
double min, max;

min = getNumber(“Enter min radius:”;
max = getNumber(“Enter max radius:”

) search(front, min, max);
} while (cmd !'= Quit);

deallocate(front);
return 0; // end of main

Completing getCommand

// typical prompt and read until they give a valid response
char getCommand()

{
cout << “Enter “ << Insert << “ to insert,” << endl;
cout << “ or “ << Search << “ to search,” << endl;
cout << “ or “ << Quit << “ to quit,” << endl;
char cmd;

cin >> cmd;
cmd = toupper(cmd);
switch (cmd) {
case Insert:
case Quit:
case Search:
return cmd;
default:
cout << “That was an invalid command, “;
cout << “please try again” << endl;
return getCommand() ;

Completing getNumber

// usual recursive get-a-number, fllushing buffer on garbage
%oub]e getNumber(string prompt)
const int LineLen = 80; // max num input chars to clear
cout << prompt << endl;
double num;
cin >> num;
if (cin.fail(Q)) {
cin.clear(Q);
cin.ignore(LineLen, '\n');
cout << “That was not a number, please try again” << endl;
y num = getNumber (prompt);

return num;

Completing create

%1rc1e* create(double x, double y, double r)
// create the new circle and make sure new worked
Circle* newcirc = new Circle;
if (newcirc != NULL)
// set all the field values
newcirc->x = X;
newcirc->y = y;
newcirc->radius = r;
, nhewcirc->next = NULL;
// return the pointer to the “filled in” new circle
return newcirc;

Completing insert

bool insert(Circle* &front, Circle* &back, Circle *newcirc)
{

if (newcirc == NULL) {
// we were given a non-existent circle to insert
return false;

} else if (front == NULL) {

// this 1is the first and only item in the 1list so far,

// so we need to update front and back to refer to it
front = newcirc;

back = newcirc;
return true;
} else {
// this isn't the first item,
// so we just need to update back

back->next = newcirc; // old back item knows new one comes next

back = newcirc; // back knows the new item is now the last
return true;

Completing search

void search(Circle* front, double minRad, double maxRad)

// go from front of Tist to back, one item at a time
// NULL means we've hit end of 1list
Circle* current = front;

while (current != NULL) { _ _ _
// check the circle radius against the min/max we were given

if ((current->radius >= minRad) & & (current->radius <= maxRad)) {
// found one! print the current circle
cout << “(" << curr->x << “,” << curr->y << “):7;
cout << curr->radius << endl;

Completing deallocate

void deallocate(Circle* &front)

// delete one item at a time until hit the end of list
while (front != NULL) {
// remember the one to be deleted
Circle* victim = front;
// advance front to point to the next one in line
front = front->next;

// deallocate the one to be deleted
delete victim;

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

