

Intro to loops

● repetition without recursion
● top-tested vs bottom-tested
● while loops
● do while loops
● for loops
● equivalence of loop types
● loop scope/local variables

Repetition without recursion

● we've seen how to use recursion to get repetition in a
program, but function calls/returns expensive compared to
“regular” instructions (both in memory use and time)

● most languages (C++ included) provide a control structure
that allows simpler repetition: informally called loops

● generally: a block of code that is to be performed
repeatedly, plus a condition to checked periodically to see
whether it should repeat again or leave the loop

Top-tested vs bottom-tested

● the condition-to-check is generally tested once each time
the block of code may be run

● top-tested loops have the condition check before the block
of code (at the top)

● bottom-tested loops have the condition check after the
block of code (at the bottom)

block

test
block

test

while loops

● top tested
● tests a boolean expression, like those in if statements
● if condition is false then it skips past the block of code,

goes on to rest of program
● if condition is true then is performs block of code,

afterward coming back to check condition again
 while (x < y) {

 cout << x << endl;

 x++; // shorthand for x = x + 1

 }

Example: countdown from N

// count down from N to 1 then display “done!”

int N = 10;

while (N > 0) {

 cout << N << endl;

 N--; // shorthand for N = N - 1

}

cout << “done!” << endl;

// at start of each cycle it checks if N > 0

// does the steps inside the loop if so,

// otherwise skips just past the end of the loop

do while loops

● similar to while loops, but has the test at the bottom
● does the loop body, then at the bottom checks condition
● if condition is true it goes back to the top to do loop again
● otherwise it leaves loop
 do {

 cout << x << endl;

 x++;

 } while (x < y);

Example: get/check input

● get an int from user, repeat until they give value > 0
int userVal;

do {

 cout << “Enter a positive integer” << endl;

 cin >> userVal;

} while (userVal <= 0); // repeats if userVal still too small

cout << “Final answer: “ << userVal << endl;

// (so far we're not checking cin.fail)

Example: better error checking

● this time we'll check if cin failed (they entered non-integer),
and flush the input buffer if so

● we'll also check if they entered an integer that was simply
too small

● we'll use a boolean variable to keep track of whether or not
the value they entered was a good one

● the loop test will simply look at the value in the variable to
see if we need to repeat again

Err checking example continued

 // next check for too small
 else if (userVal <= 0) {
 badValue = true;
 cout << “Try again” << endl;
 }

 // otherwise it's ok
 else {
 badValue = false;
 }
} while (badValue);

// leaves loop if badValue false
cout << userVal << endl;

int userVal;

// true for bad val, false for good
bool badValue;

do {
 cout << “Enter positive int: “;
 cin >> userVal;

 // check for non-integer *first*
 if (cin.fail()) {
 badValue = true;
 cin.clear();
 cin.ignore(40, '\n');
 cout << “Try again” << endl;
 }

for loops

● top tested, fancier control structure
● control statement has spot for variable initialization, spot

for the test condition, spot for the update statement
● the three “spots” separated by semi-colons
● initialization just happens once at the start
● condition is checked at top, before each pass thru body
● update statement is performed at the bottom, just after

each pass through the body

Example: for loop

// count from 0 to 20 by twos

int x;

for (x=0; x<=20; x=x+2) {

 cout << x << endl;

}

cout << “done!” << endl;

// acts just like

int x;

x=0;

while (x<=20) {

 cout << x << endl;

 x=x+2;

}

cout << “done!” << endl;

equivalence of loop types

● anything written using one of the three loop types can be
rewritten using either of the other two loop types

● might require slight tweaking of the logic, perhaps the
addition or removal of an extra if test at the beginning

● which form is used is largely a programmer decision:
whichever seems easiest/clearest in the current situation

● do while is often used for getting/checking input
● for loops often used when counting up/down through some

sequence of values

loop scope/local variables

● scope is term used to describe where a variable or
constant (or other item) is visible/accessible within code

● we've seen global scope, visible everywhere (after point of
declaration)

● we've seen local (function) scope, visible only within
current function (after point of declaration)

● now we'll also add local (loop) scope, visible only within
current loop (after point of declaration)

Example: loop scope

int x;

x = 5;

while (x < 10) {

 int y; // loop local

 cout << “Enter int”;

 cin >> y;

 cout << (x*y) << endl;

}

// y is not usable outside loop

cout << x << endl;

Note: do-while and loop locals

● the condition check at the bottom of the loop is considered
outside the loop body, so variables declared inside the
loop are NOT usable there

 do {

 int y;

 cin >> y:

 } while (y < 1); // compilation error, y not usable here!

● solution: declare the variable above the do {

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

