Intro to loops

e repetition without recursion
 top-tested vs bottom-tested
* while loops

e do while loops

« for loops

 equivalence of loop types

* loop scope/local variables




Repetition without recursion

« we've seen how to use recursion to get repetition in a
program, but function calls/returns expensive compared to
“regular” instructions (both in memory use and time)

* most languages (C++ included) provide a control structure
that allows simpler repetition: informally called loops

« generally: a block of code that is to be performed
repeatedly, plus a condition to checked periodically to see
whether it should repeat again or leave the loop



Top-tested vs bottom-tested

* the condition-to-check is generally tested once each time
the block of code may be run

» top-tested loops have the condition check before the block
of code (at the top)

* bottom-tested loops have the condition check after the
block of code (at the bottom)

- test
& block

&




while loops

« top tested
» tests a boolean expression, like those in if statements

« if condition is false then it skips past the block of code,
goes on to rest of program

 if condition is true then is performs block of code,
afterward coming back to check condition again

while (x < vy) {
cout << x << endl;
X++; // shorthand for x = x + 1



Example: countdown from N

// count down from N to 1 then display “done!”
int N = 10;
while (N > 0) {
cout << N << endl;
N--; // shorthand for N = N - 1
}
cout << “done!” << endl;
// at start of each cycle it checks if N > O
// does the steps inside the Toop if so,
// otherwise skips just past the end of the Tloop



do while loops

« similar to while loops, but has the test at the bottom

e does the loop body, then at the bottom checks condition
 if condition is true it goes back to the top to do loop again

e otherwise it leaves loop
do {
cout << x << endl;
X++;
} while (x < vy);



Example: get/check input

e get an int from user, repeat until they give value > 0
int userval;
do {
cout << “Enter a positive 1nteger” << endl;
cin >> userval;
} while (userval <= 0); // repeats if userval still too small

cout << “Final answer: << userval << endl;

// (so far we're not checking cin.fail)



Example: better error checking

* this time we'll check if cin failed (they entered non-integer),
and flush the input buffer if so

« we'll also check if they entered an integer that was simply
too small

« we'll use a boolean variable to keep track of whether or not
the value they entered was a good one

* the loop test will simply look at the value in the variable to
see if we need to repeat again



Err checking example continued

int userval;

// true for bad val, false for good
bool badvalue;

do { .
cout << “Enter positive int: “;
cin >> userval;

// check for non-integer *first*®
if (cin.fail(Q)) {

badvalue = true;

cin.clear();

cin.ignore(40, '\n');

cout << “Try again” << endl;

// next check for too small
else if (userval <= 0) {
badvalue = true;
cout << “Try again” << endl;

}

// otherwise it's ok
else {
badvalue = false;

}
} while (badvalue);

// leaves loop if badvalue false
cout << userval << endl;



top tested, fancier control structure

control statement has spot for variable initialization, spot
for the test condition, spot for the update statement

the three “spots” separated by semi-colons
Initialization just happens once at the start
condition is checked at top, before each pass thru body

update statement is performed at the bottom, just after
each pass through the body



Example: for loop

// count from 0 to 20 by twos

int X;

for (x=0; x<=20; x=x+2) {
cout << X << endl;

}

cout << “done!” << endl;

// acts just like
int X;
x=0;
while (x<=20) {
cout << X << endl;
X=X+2;
}

cout << “done!” << endl;



equivalence of loop types

anything written using one of the three loop types can be
rewritten using either of the other two loop types

might require slight tweaking of the logic, perhaps the
addition or removal of an extra if test at the beginning

which form is used is largely a programmer decision:
whichever seems easiest/clearest in the current situation

do while is often used for getting/checking input

for loops often used when counting up/down through some
sequence of values



loop scope/local variables

e scope is term used to describe where a variable or
constant (or other item) is visible/accessible within code

« we've seen global scope, visible everywhere (after point of
declaration)

« we've seen local (function) scope, visible only within
current function (after point of declaration)

 now we'll also add local (loop) scope, visible only within
current loop (after point of declaration)



Example: loop scope

int X;
X = 5;
while (x < 10) {
int y; // loop local
cout << “Enter 1int”;
cin >> vy;
cout << (x*y) << endl;
}
// y i1s not usable outside Tloop
cout << X << endl;



Note: do-while and loop locals

« the condition check at the bottom of the loop is considered
outside the loop body, so variables declared inside the
loop are NOT usable there

do {
int y;

cin >> y:
} while (y < 1); // compilation error, y not usable here!

 solution: declare the variable above the do {



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

