Nested loops, break, continue

« added loop control: break, continue

* loops within loops (nested loops)
 indentation: functions, loops, if/else, etc
e common loop errors/issues




Added loop control: break

e break allows us to exit a loop early, before the next
condition check

« usually placed in an if statement, so if some-special-
condition is true then break out of loop

« as a style/habit it is somewhat avoided

creates multiple potential exit points from the loop instead of just one

tends to be more difficult to read/maintain code where break statements
embedded inside the loop body

preferred approach is to have the loop exit/repeat logic obvious in the
loop test itself



break example

// get 10 values from user, compute sum
// quit early if user enters a 0O

int N = 10;

int sum = 0;

while (N > 0) {
int X;
cout << “Enter an int”’;
cin >> X;
if (x == 0) {
) break;

sum = sum + X;

N--;
}

cout << sum << endl;



Added loop control: continue

 allows code to skip the lower part of the loop body,
skipping ahead to the next time the condition check occurs

» similar style as break

« similar concerns with respect to obscuring loop
functionality



Continue example

// get 10 values from user, compute sum
// don't count negative entries

int N = 10;

int sum = 0;

while (N > 0) {
int X;
cout << “Enter an int”’;
cin >> X;
if (x < 0) {
) continue;

sum = sum + X;

N--;
}

cout << sum << endl;



Nested loops

e can declare one loop inside another (any types)

« the inner loop must be completely within the body of the
outer loop

 the inner loop runs to completion (likely multiple times)
each time you make one pass through the body of the
outer loop



Nesting example

« print 5 lines of output, for (int 1line = 1; line <= 5; line++) {

on each line print cout << “Line “ << 1ine << “: “;

for (int n=1; n<=10; n++) {

values 1..10 } cout << “ “ << n;
e outer loop controls cout << endl;

which of the 5 lines }

we're printing, inner Line1: 12345678910

loop controls printing Line2: 12345678910

Line 312345678910
the 10 values for the Line4- 123456789 10

current line Line5:12345678910



Indentation habits

global items lined up at left hand margin (functions, main,
global variables/constants, #includes, etc)

code within the body of a function/main is indented (eg 4
spaces)

code within a control structure is indented an additional 4
spaces

indentation increases with each layer of control structure,
e.g. inside an if statement that is inside a loop we'll indent
12 spaces (4 for the function, 4 for the loop, 4 for the if)

thus visually obvious where control structures begin/end



Common loop errors

* infinite loops
- (forgetting to update the variables used in your condition test, or the
condition check isn't quite appropriate to guarantee termination)

 off-by-one errors

- running body of the loop one extra time or one time too few, usually just
requires a tweak to the condition test (e.g. mixup between < and <=)

* SCOpe errors

- declaring a variable inside the loop when it should be outside, or having
two variable scopes overlap

- e.g. an x in the function outside the loop and another x inside the loop,
mixing up which one is updating/visible where



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

