

Nested loops, break, continue

● added loop control: break, continue
● loops within loops (nested loops)
● indentation: functions, loops, if/else, etc
● common loop errors/issues

Added loop control: break

● break allows us to exit a loop early, before the next
condition check

● usually placed in an if statement, so if some-special-
condition is true then break out of loop

● as a style/habit it is somewhat avoided
– creates multiple potential exit points from the loop instead of just one

– tends to be more difficult to read/maintain code where break statements
embedded inside the loop body

– preferred approach is to have the loop exit/repeat logic obvious in the
loop test itself

break example

// get 10 values from user, compute sum
// quit early if user enters a 0
int N = 10;
int sum = 0;

while (N > 0) {
 int x;
 cout << “Enter an int”;
 cin >> x;
 if (x == 0) {
 break;
 }
 sum = sum + x;
 N--;
}

cout << sum << endl;

Added loop control: continue

● allows code to skip the lower part of the loop body,
skipping ahead to the next time the condition check occurs

● similar style as break
● similar concerns with respect to obscuring loop

functionality

Continue example

// get 10 values from user, compute sum
// don't count negative entries
int N = 10;
int sum = 0;

while (N > 0) {
 int x;
 cout << “Enter an int”;
 cin >> x;
 if (x < 0) {
 continue;
 }
 sum = sum + x;
 N--;
}

cout << sum << endl;

Nested loops

● can declare one loop inside another (any types)
● the inner loop must be completely within the body of the

outer loop
● the inner loop runs to completion (likely multiple times)

each time you make one pass through the body of the
outer loop

Nesting example

● print 5 lines of output,
on each line print
values 1..10

● outer loop controls
which of the 5 lines
we're printing, inner
loop controls printing
the 10 values for the
current line

for (int line = 1; line <= 5; line++) {
 cout << “Line “ << line << “: “;
 for (int n=1; n<=10; n++) {
 cout << “ “ << n;
 }
 cout << endl;
}

Line 1: 1 2 3 4 5 6 7 8 9 10
Line 2: 1 2 3 4 5 6 7 8 9 10
Line 3: 1 2 3 4 5 6 7 8 9 10
Line 4: 1 2 3 4 5 6 7 8 9 10
Line 5: 1 2 3 4 5 6 7 8 9 10

Indentation habits

● global items lined up at left hand margin (functions, main,
global variables/constants, #includes, etc)

● code within the body of a function/main is indented (eg 4
spaces)

● code within a control structure is indented an additional 4
spaces

● indentation increases with each layer of control structure,
e.g. inside an if statement that is inside a loop we'll indent
12 spaces (4 for the function, 4 for the loop, 4 for the if)

● thus visually obvious where control structures begin/end

Common loop errors

● infinite loops
– (forgetting to update the variables used in your condition test, or the

condition check isn't quite appropriate to guarantee termination)

● off-by-one errors
– running body of the loop one extra time or one time too few, usually just

requires a tweak to the condition test (e.g. mixup between < and <=)

● scope errors
– declaring a variable inside the loop when it should be outside, or having

two variable scopes overlap

– e.g. an x in the function outside the loop and another x inside the loop,
mixing up which one is updating/visible where

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

