Recursion: function calls itself

« if we've provided a prototype, a function can call itself
e such functions are called recursive

e recursion can be used for simple repetition, or for gradual
repeated calls with simpler and simpler data to process

* relies on the use of an if/else statement to check whether or not
a recursive call is necessary, to guarantee that eventually the
function stops calling itself

* logic errors can lead to runaway/infinite recursion: runs until the
program crashes or the user hits control-C to kill it



Base/stop vs general case

» the base case (or cases) dictate circumstances under
which a function should NOT call itself again

« the general case (or cases) refers to all the cases where
the function does need to call itself again

 recursive functions need to check if they've encountered a
base case before they make a recursive call

« usually have one set of actions to do in the base case, and
a different set of actions (including the recursive call) in the
general case



Example: print vals

// program to pr'-| nt N void printVals(int N)
// and count down to 1 {
_ _ // base case, just print N and end
#include <iostream> if (N <=1){
using namespace std; cout << N << endl:
void printvals(int N); }
int mainQ) /I general case, print N then call recursively
// on N-1 to print the smaller values of N
int start = 10; else {
printvals(10); cout << N << endl;
printVals(N-1);
}

}



Calls complete before returning...

« why did that count down from 10 to 1?

* main calls printVals(10)

- printVals(10) prints 10 then calls printVals(9)
« printVals(9) prints 9 then calls printVals(8)

« printVals(2) prints 2 then calls printVals(1)
» printVals(1) prints 1 then ends, returning to the printVals(2)
* printVals(2) ends, returning to printVals(3)

 printVals(9) ends, returning to printVals(10)
- printVals(10) ends, returning to main



Example: repeat until input valid

// program to get positive int
// from user, keep trying until
// valid input is obtained

#include <iostream>
using namespace std;

int getPosInt();
int main()
int userval;

userval = getPosInt();
cout << “You chose “ << userval;

}

int getPosInt()

{

cout << “Enter a positive int” << endl;

int val;

cin >> val;

if (cin.fail(Q)) {
cout << “That was not an int, ”;
cout << “please try again” << endl;
cin.clear();
cin.ignore(80, '\n');
val = getPosInt();

} else if (val < 1) {
cout << “That was not positive, ”;
cout << “please try again” << endl;
val = getPosInt();

} else {

) cout << “valid int obtained” << endl;

return val;



Efficiency issues with recursion

each call to a function sets up space in memory (the system
stack, or call stack) for that function call's local variables,
parameters etc

In previous example, while printVals(1) is running the program
has memory space set aside to remember variables and
params for main, printVals(10) call, printVals(9) call, ...,
printVals(1) call

if main called printVals(100000) then by the time printVals(1)
was called the program would be storing 100,000 sets of local
vars/parameters

a different form of repetition (loops) is thus often preferable



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

