

Recursion: function calls itself

● if we've provided a prototype, a function can call itself
● such functions are called recursive
● recursion can be used for simple repetition, or for gradual
repeated calls with simpler and simpler data to process
● relies on the use of an if/else statement to check whether or not
a recursive call is necessary, to guarantee that eventually the
function stops calling itself
● logic errors can lead to runaway/infinite recursion: runs until the
program crashes or the user hits control-C to kill it

Base/stop vs general case

● the base case (or cases) dictate circumstances under
which a function should NOT call itself again

● the general case (or cases) refers to all the cases where
the function does need to call itself again

● recursive functions need to check if they've encountered a
base case before they make a recursive call

● usually have one set of actions to do in the base case, and
a different set of actions (including the recursive call) in the
general case

Example: print vals 1..N

// program to print N
// and count down to 1

#include <iostream>
using namespace std;

void printVals(int N);

int main()
{
 int start = 10;
 printVals(10);
}

void printVals(int N)
{
 // base case, just print N and end
 if (N <= 1) {
 cout << N << endl;
 }

 // general case, print N then call recursively
 // on N-1 to print the smaller values of N
 else {
 cout << N << endl;
 printVals(N-1);
 }
}

Calls complete before returning...

● why did that count down from 10 to 1?
● main calls printVals(10)

– printVals(10) prints 10 then calls printVals(9)
● printVals(9) prints 9 then calls printVals(8)

– ...
● printVals(2) prints 2 then calls printVals(1)

● printVals(1) prints 1 then ends, returning to the printVals(2)
● printVals(2) ends, returning to printVals(3)

– ...
● printVals(9) ends, returning to printVals(10)

– printVals(10) ends, returning to main

Example: repeat until input valid

// program to get positive int
// from user, keep trying until
// valid input is obtained

#include <iostream>
using namespace std;

int getPosInt();

int main()
{
 int userVal;
 userVal = getPosInt();
 cout << “You chose “ << userVal;
}

int getPosInt()
{
 cout << “Enter a positive int” << endl;
 int val;
 cin >> val;
 if (cin.fail()) {
 cout << “That was not an int, ”;
 cout << “please try again” << endl;
 cin.clear();
 cin.ignore(80, '\n');
 val = getPosInt();
 } else if (val < 1) {
 cout << “That was not positive, ”;
 cout << “please try again” << endl;
 val = getPosInt();
 } else {
 cout << “Valid int obtained” << endl;
 }
 return val;
}

Efficiency issues with recursion

● each call to a function sets up space in memory (the system
stack, or call stack) for that function call's local variables,
parameters etc

● in previous example, while printVals(1) is running the program
has memory space set aside to remember variables and
params for main, printVals(10) call, printVals(9) call, ... ,
printVals(1) call

● if main called printVals(100000) then by the time printVals(1)
was called the program would be storing 100,000 sets of local
vars/parameters

● a different form of repetition (loops) is thus often preferable

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

