Searching and sorting

e it is very common to store and search large amounts of data

o if the data is unsorted then in a search we might have to look at
every stored value to verify if a specific value is present/not

o if the data is already sorted then we can apply more efficient
search techniques

 for now we'll assume our data is stored in an array

* we'll look at two search techniques (linear and binary) and one
sorting techniques (bubblesort), as well as a routine to check if our
data values are sorted or not



linear searches

 a linear search looks in each position of the array, going
from first to last (or from last to first)

e |t works whether the data is sorted or not, but can be slow
for large arrays since

- if the value is in the array we still might have to look in every
position before we finally find it

- if the value isn't in the array we have to check every position
before we can be sure it isn't anywhere in the array



Example: linear search

* here going from front to back, looking for a target value and returning
the first array position where we find it

 if we never find it then we return -1 (something that isn't a valid
position, allows caller to recognize it wasn't found)

int search(float arrf], int size, float target)
{
for (int p=0; p<size; p++) {
if (arr[p] == target) {
return p; // found it!
}
}

return -1; // never found it

}



Calling search

 after calling search, we check the return value to see if it
found something

int pos = search(myArray, myArraySize, 17.5);

if (pos == -1) {
cout << “17.5 was not in the array” << end|;
} else {

cout << “found 17.5 in position “ << pos << endl;

}



binary search on sorted data

 if we know our data is in sorted order (and know if it's in increasing
order or decreasing order) we can use (more efficient) binary search

« use low and high to keep track of the section of the array we are still
searching, start with 0 and size-1

* repeat until target found or low > high:

- compute the middle position between low and high
- if we find the target in the middle position then we're done

- else if the value in the middle is bigger than what the target then we can
ignore everything from middle to high, so change high to middle-1

- otherwise we can ignore everything from low to middle, set low to
middle+1



recursive binary search

e assumes sorted in increasing order

int binarySearch(float arr{], int low, int high, float target)
{
if (low > high) {
return -1; // impossible range
}
int mid = (low + high) / 2; // int division, drops fractions
if (arrfmid] == target) {
return mid; // found it!
} else if (arrfmid] > target) {
high = mid - 1; // value must be in lower half of this section
return binarySearch(arr, low, high, target);
} else {
low = mid + 1; // value must be in upper half of this section
return binarySearch(arr, low, high, target);

}
}



Sample call

« as with linear search, except we're passing 0 and size-1 as
the lower/upper portions of the array to search

« if the array finds duplicates then binarySearch doesn't
necessarily find the first one, just guaranteed to find one
int pos = BinarySearch(myArray, 0, myArraySize-1, 17.5);

if (pos ==-1){
cout << “17.5 was not in the array” << end|;
} else {

cout << “found 17.5 in position “ << pos << end|;

}



Efficiency

* because binary search “discards” half of remaining search
space with each call, in N calls it can search an array of
approximately 2" elements

- 10 calls can search roughly a thousand elements
- 20 calls can search roughly a million elements

- 30 calls can search roughly a billion elements

- etc

* much more efficient than looking in all N elements!



Iterative (loop) version

int binarySearch(float arrf], int size, float target)
{

!nt IO_W =_O;. _ same logic, just using a
int high = size-1; loop to keep updating low

do{ | and high until we're done
int mid = (low + high) / 2;

if (arr[mid] == target) {
return mid;
} else if (arr[mid] > target) {
high = mid - 1;
} else {
low = mid + 1;
}
} while (low <= high);
return -1;

}



Bubblesort

o first sorting algorithm, for an array of size N (in this
example we assume sorting in increasing order)

* go through the entire array over and over

- each time we go through the array, we compare all the pairs of
adjacent elements
« if a pair of elements is out of order then we swap them

 at the end of each pass through the array it will be closer
to being sorted

 also after each pass, the next biggest value will have
reached it's correct position in the array



Example: bubblesort

initial array content 3 17 -1 8

in first pass

- 3,17 are in ok order so move on

- 17,-1 out of order so swap them, now 3-1 17 8
- 17,8 out of order so swap them, now 3 -18 17

In second pass

- 3,-1 out of order so swap them, now -1 3 8 17
- 3,8 are in ok order, so move on
- 8,17 are in ok order so move on

keep repeating passes until eventually all sorted



swap revisited

« we'll be swapping array elements frequently, so would help
to have a swap function

void swap(float &x, float &y)
{

float originalX = x;

X =Y,

y = originalX;



bubblesort version 1

e we can guaranteed that after size-1 passes all values will
have reached their correct position

void bubblesort(float arr[], int size)
{
/l pass tracks how many passes we've made through array
for (int pass=0; pass<size-1; pass++) {
// pair is position of the second of the two elements we're comparing now
for (int pair=1; pair<size; pair++) {
if (arr[pair-1] > arr[pair]) {
swap(arr[pair-1], arr[pair]); // swap the out-of-order pair
}
}
}
}



bubblesort version 2

/] stops after a pass finds nothing out of order
void bubblesort(float arr[], int size)

{
bool sorted;
int pN = 1; // which pass we're on
do {

sorted = true;
// don't have to go into last pN positions, they're already ok
for (int p=0; p<size-pN; p++) {
if (arr[p] > arr[p+1]) {
sorted=false; // found something still out of order
swap(arr[p], arr[p+1]);
}
}
PN++;
} while (!sorted);
}



checking if sorted

 we may not know if data in an array is already sorted, so
can write a routine to check

bool isSorted(float arr[], int size)

{
for (int p=0; p<size-1; p++) {
1if (arr[p] > arr[p+1]) {
return false; // found out of order pair

}

return true; // everything was in order



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

