

structs in C++

● structs are a form of container, used to group multiple data items
(possibly of different types) into a single logical entity
IMPORTANT NOTE ON STRUCTS VS CLASSES:

● in fact, the only technical difference between a C++ class and a C++ struct
is that structs declare/inherit things publicly by default, whereas classes
declare/inherit them privately by default
● by convention, however, programmers use the two quite differently: structs
being used purely as data containers, and classes being used where we wish
to incorporate more advanced functionality (e.g. methods)
● in these slides we will strictly use structs in the conventional form (i.e. without
associated methods)

structs as a container

● arrays allowed us to group elements of a specific data type
into a single logical entity, then refer to them by position
within the array

● structs allow us to group elements of different data types
into a single logical entity

● when we define a struct we are actually defining a new
data type: a record or structure made up of a variety of
components, or fields, each given their own name

● we can then declare variables, constants, parameters etc
that are of that type, and assign values to their fields

struct syntax

● we specify a new typename, plus types and names for each of
the individual fields

● for example, information about a product in a store
 struct productInfo {

 string name;

 float price;

 };

● we can create variables of the new data type, and access
content through variablename.fieldname, e.g.

 productInfo x, y, z;

 x.name = “Widget”;

struct use, example

● we can use the var.field syntax anywhere we could use a
variable of the same type, e.g. the the productInfo from the
previous slide

 productInfo p;

 cout << “Enter the product name and price” << endl;

 cin >> p.name >> p.price;

 cout << p.name << “ $” << p.price << endl;

structs as value parameters

● we can write functions to expect structs as parameters
 void print(productInfo prod)

 {

 cout << “Item: “ << prod.name;

 cout << “, $” << prod.price << endl;

 }

● and we can call them by passing the variable name
 print(p); // from previous slide's example

structs passed by reference

● for a function to change the content of a struct, the struct
must be passed by reference

 void fill(productInfo &prod)

 {

 cin >> prod.name >> prod.price;

 }

● we can then call the function normally
 fill(p);

Arrays of structs

● as with other data types, we often want to store a
collection of them, e.g. in an array

 const int size = 10;

 productInfo products[size];

● we refer to a field within specific item using the arrayname,
the position in the array, and the fieldname

 for (int i=0; i<size; i++) {

 cin >> products[i].name;

 cin >> products[i].price;

 }

Array of structs as a parameter

● as with other kinds of arrays, we can pass them as params
 void fillProducts(productInfo prods[], int num)

 {

 for (int i=0; i<num; i++) {

 cin >> prods[i].name;

 cin >> prods[i].price;

 }

 }

● we call by passing the array name and size
 fillProducts(products, size);

Example: searching arr of struct

● a function to search an array for a product with a specific
name, returning its position (or -1 if not found)

 int findProd(productInfo prods[], int size, string target)

 {

 for (int p = 0; p < size; p++) {

 if (prods[p].name == target) {

 return p; // found a match

 }

 }

 return -1; // didn't find it anywhere in the array

 }

Structs for abstraction

● note that grouping the product information into a struct has
allowed us to think of a product as a logical entity

● if we add, remove or alter fields from the struct, the internal
details of functions like fill or print must change, but not the
profile of the function and not the routines using the function

 int main() {

 // nothing in main cares about p's internal details

 productInfo p;

 fill(p);

 print(p);

 }

Structs of structs

● we can create heirachies of
structs, consider

● a Student struct might
contain information about
their marks on each of up
to 10 labs

● a Course struct might then
contain information about
each of up to 60 students

const int N=10;
const int S=60;

struct Student {
 string name;
 float marks[N];
 int numLabs;
};

struct Course {
 string instructor;
 int numStudents;
 Student students[S];
};

Accessing nested struct fields

● we could access specific fields directly, e.g. assigning a
mark for lab j of student i in the course:

Course info160; // assuming this was our course variable

cout << “Enter the mark for lab “ << j;

cout << “ for student “ << info160.students[i].name;

cin >> info160.students[i].marks[j];

// store the value inside info160:

// in the i'th position of the students array:

// in the j'th position of the marks array for the student

Simpler with abstraction

● the syntax (and maintenance) is cleaner if we have
functions to deal with the relevant layers, e.g.

 void fill(Student &s); // fill one student's info

 void fill(Course &c); // whole course, uses student fill

 int main()

 {

 Course info160;

 fill(info160);

 }

Example continued

// fill in a single student's info
void fill(Student &s)
{
 cout << “Enter student name: ”;
 cin >> s.name;

 cout << “Enter number of labs done”;
 cin >> s.numLabs;

 for (int i=0; i<s.numLabs; i++) {
 cout << “Enter the lab mark: “;
 cin >> s.marks[i];
 }
}

// get info for whole course
void fill(Course &c)
{
 cout << “Enter instructor name: “;
 cin >> c.instructor;

 cout << “Enter the number of students: “;
 cin >> c.numStudents;

 for (int i=0; i<c.numStudents; i++) {
 fill(c.students[i]);
 }
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

