

More with structs...

Objective today is to get more practice with:
● heirarchies of structs
● design and implementation using structs
● assigning structs to structs
● structs as return values

Assigning structs to structs

● taking our points in random order :)
● you can assign structs to each other if they are of the

same type
● uses = field by field on the values
struct SomeItem {
 float f;
 string s;
};

SomeItem x = { 1.2, “foo” };
SomeItem y;
y = x;

// the y = x acts the same as
y.f = x.f;
y.s = x.s;

Risk of using = on structs

● this only works if = works for each of the field data types
● doesn't copy array fields, because = doesn't work to assign

arrays

struct ItemWithArray {
 int arr[20];
 float f;
 string s;
};

ItemWithArray a, b;
a = b; // does copy fields f and s ok
 // does NOT copy the array content

Structs as return values

● you can return a struct from a function (a common way of
packaging multiple values into a return)

● acts like assigning struct at point of return (with the same risks if
the returned struct contains things like arrays)

struct SomeItem {
 string str;
 int num;
};

SomeItem getAnItem()
{
 SomeItem x;
 cin >> x.str;
 cin >> x.num;
 return x
}

int main()
{
 // called like
 SomeItem myItem = getAnItem();

Practice problem: colliding circles

● common problem in games or simulations: given a bunch
of shapes in 2d or 3d space, determine which shapes
collide with each other/when

● we'll keep it simple and just deal with stationary circles in
2d space: how can we model them and tell which ones
overlap?

● possible way to model a circle is as a point (marking its
centre) plus its radius ... if we can model a point

● possible way to model a point is as an x,y coordinate pair

Structs for points and circles

struct Point {
 float x;
 float y;
};

void fill(Point &pt) {
 cout << “Enter x and y: “;
 cin >> pt.x >> pt.y;
}

void print(Point pt) {
 cout << “(“ << x << “,”;
 cout << y << “)”;
}

struct Circle {
 Point p;
 float rad;
};

void fill(Circle &c) {
 fill(c.p);
 cout << “Enter radius: “;
 cin >> c.rad;
}

void print(Circle c) {
 print(c.p);
 cout << “:” << c.rad;
}

Detecting all collisions

● assume we can write a function to check if two circles overlap

int main()
{
 // get our collection of circles
 const int NumCircs = 10;
 Circle circs[NumCircs];
 for (int c = 0; c < NumCircs; c++) {
 fill(circs[i]);
 }

 // in collection, check each circle against
 // all the “later” circles in the array
 for (int first = 0; first < NumCircs-1; first++) {
 for (int sec = first+1; sec < NumCircs, sec++) {
 if (collides(circs[first], circs[sec])) {
 // display info about detected collision
 cout << “collision detected between “;
 print(circs[first]);
 cout << “ and “;
 print(circs[sec]);
 cout << endl;
 }
 }
 }
}

Detecting one collision

● two circles collide (overlap) if the distance between their centres
is less than the radius of the first plus the radius of the second

● let's assume we can write a function to compute distance
between their centres

bool collides(Circle c1, Circle c2)
{
 float distance = distBetween(c1.p, c2.p);
 if (distance < (c1.rad + c2.rad)) {
 // they're too close, they overlap
 return true;
 }
 return false; // didn't overlap
}

Getting distance between centres

● formula to compute distance between two points, (x1,y1)
and (x2,y2) is well known:

 (x1-x2)2 + (y1-y2)2 = dist2

float distBetween(Point p1, Point p2)
{
 float xpart = p1.x - p2.x;
 float ypart = p1.y - p2.y;
 distsq = (xpart * xpart) + (ypart * ypart);
 return sqrt(distsq);
}

Gives us all the parts of our program!
Lots of ways to improve efficiency, but that's for another day :)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

