

Multidimensional arrays

● so far we have just considered one-dimensional arrays: a
sequence of N elements of the same type
● we can also create multi-dimensional arrays
● two dimensional arrays are the most common, and are often
used to represent tables, grids, or matrices
● arrays with three or more dimensions are less common, but can
be useful in the right circumstances
● we need to consider declaration and access syntax, and address
some compilications with respect to parameter passing

Two dimensional arrays

● the simplest way to think of 2D arrays is as a table, e.g. M
rows of data, with N columns in each row

● we declare the array by specifying the number of rows and
columns, e.g.

 const int Rows = 3;

 const int Cols = 5;a

 float data[Rows][Cols];

● data is an array of 3 rows by 5 columns, each entry
containing one float (15 floats in all)

Accessing elements

● we access elements by specifying the position in each
dimension, row first, then column

● positions are number starting from 0
 data[0][0] = 5.1; // first row, first column

 data[0][1] = 4.6; // second row, second column

 ...

 data[2][4] = 0.123; // last row, last column

Nested loops

● it's common to go through each row and column, one
element at a time, e.g.

 for (int r = 0; r < Rows; r++) {

 for (int c = 0; c < Cols; c++) {

 cin >> data[r][c]; // read data into current elem

 }

 }

Initializing at declaration

● We can initialize a 2D array at the point of declaration, e.g.
 int arr[3][4] = {

 { 10, 20, 30, 40 },

 { 6, 3, 1, 9 },

 { 1074, -19, 200, 42 }

 };

● this can only be done at the point of declaration, and we
must have the correct number of rows and columns
throughout

Initializing 2d arrays of char

● we can use the “” notation for 2d char arrays, e.g.
 char text[4][6] = {

 “abcde”,

 “12345”,

 “argh!”,

 “ZYXWV”

 };

● remember the null terminator in these counts as a char

Common uses

● 2d arrays are often used to store information for things like
– entries in a spreadsheet
– text on a page
– values in a matrix

– data points on a 2d map

Memory considerations

● If the number of rows and columns gets large, we should
be aware of the total memory being used

● size in bytes can be calculated as
Rows * Cols * sizeof(float)

● when we get into arrays with more dimensions the same
idea holds:
– take the product of all the dimensions and multiply by the

number of bytes needed for a single element

Passing as parameters

● when declaring a function that will accept a 2d array as a
parameter, the syntax is a little different:
– this time we actually specify the number of columns in the array

as part of the parameter, but leave the number of rows empty
 // for arrays of 10 columns, any number of rows

 void print(float arr[][10], int rows);

● the number of columns is usually passed as an additional
parameter, we still call the function in the same way, e.g.

 print(data, 5); // assuming data is 5 rows x 10 columns

Declaring in structs

● parameter syntax can be simplified by the use of structs:

const int Rows = 3;
const int Cols = 5;

struct Table {
 float data[Rows][Cols];
};

void fill(Table &tbl);

int main() {
 Table t;
 fill(t);
}

void fill(Table &tbl)
{
 for (int r = 0; r < Rows; r++) {
 for (int c = 0; c < Cols; c++) {
 cin >> tbl.data[r][c];
 }
 }
}

This example requires the size be fixed across all
tables, we'll look at more flexible approaches soon.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

