

Intro to C++ classes and objects

● structs provide a way to group different data fields together into a
single logical entity
● in ADTs we wanted to group together the data associated with an
item and the operations on it
● structs (in their conventional use) don't give us that
● now we'll introduce classes, which allow us to group functions
and data fields together into a single item
● classes also provide us with sophisticated mechanisms for
designing data types that are built off of other data types, we'll
introduce some of these shortly

C++ class

● we can define classes using a syntax much like we used
for structs, but now we can also define functions within the
class
– subroutines are referred to as methods when they are part of a

class, and as functions when they are standalone

● when we create variables based on our class they are
referred to as objects, or as instances of that class

● we can make each part of a class private or private
– private: only the class methods can access that item
– public: any code can access it through an object of the class

C++ class syntax

● in the class definition we specify what is public and what is
private, and give the prototypes for the methods

● all the class methods have access to all the class fields

class floatArray {
 private: // we usually make the data fields private
 float* arr; // the pointer for the array
 int allocated, inuse; // how big an array did we create, how much of it is in use

 public: // we usually make the core methods public
 bool allocate(int size); // allocate this much space for the array, return true iff ok
 bool set(int pos, float val); // try to set this value in this position, return true iff ok
 bool lookup(int pos, float &val); // try to lookup value in position, return true iff ok
};

Implementing the methods

● when we provide the full implementation of the methods we
must specify which class (since different classes could have
methods of the same name) and which method

bool floatArr::allocate(int size)
{
 allocated = 0; // floatArr methods have access to the private fields
 inuse = 0;
 arr = NULL;
 if (size > 0) {
 arr = new float[size];
 if (arr != NULL) {
 allocated = size;
 return true;
 }
 }
 return false; // allocation failed due to bad size or insufficient memory
}

Creating objects, using methods

● we can create variables of the class type (aka objects/instances
of the class) and call methods through the variable
int main()
{
 floatArr myArray;
 // try to allocate an array of size 10, then work with it if allocate succeeds
 if (myArray.allocate(10)) {
 for (int i = 0; i < 10; i++) {
 float val;
 cin >> val;
 if (myArray.set(i, val) {
 cout << “stored value “ << val << “ in position “ << i << endl;
 }
 }
 } // we should also have deallocated the array space!
}

Field/method access for “outside” code

● code outside the class can only directly access fields and
methods that are public, not private

// suppose we have declared a class MyClass with
// an int field, data, and a void method, foo
int main()
{
 MyClass somevar;

 somevar.foo(); // works iff foo was declared in the public section

 somevar.data = 10; // also works iff data was declared in the public section
}

Constructors and destructors

● there are special public methods associated with each class
● constructors are methods used to initialize the fields of a class,

and a constructor is automatically run when an object is
declared

– the name of a constructor method is the same as the class name
● destructors methods “clean up” the class fields, automatically

run when the object is destroyed (e.g. variable scope ends)

– the name of a destructor is a ~ followed by the class name
● constructors and destructors have no return type

Constructor/destructor example

class Point {
 private:
 int x, y;
 public:
 Point(); // constructor
 ~Point(); // destructor
 void set(int xval, int yval);
 void print();
};

Point::Point()
{
 cout << “Enter x and y” << endl;
 cin >> x >> y;
}

Point::~Point()
{
 cout << “this is the end for “;
 print();
 cout << endl;
}

void Point::set(int xval, int yval)
{
 x = xval;
 y = yval;
}

void Point::print()
{
 cout << “(“ << x << “,” << y << “)”;
}

Example: when cons/dest run

int main()
{
 Point p; // p's constructor automatically runs here
 p.set(5,10);
 p.print();
 return 0; // p's destructor automatically runs here
}

int main()
{
 Point a, b, c; // constructors run for each

 // when main ends the destructors run on each
}

Intro to inheritance

● classes can “inherit” fields and methods from other
classes, then add their own (or replace inherited ones)

class Circle {
 protected:
 int x, y;
 float radius;
 public:
 Circle();
 ~Circle();
 void print();
 void setPt(int xval, int yval);
 void setRad(float rad);
};

class Sphere: public Circle {
 // automatically gets all Circle fields and methods
 // plus adds new fields and new methods
 protected:
 int z;
 public:
 Sphere();
 ~Sphere();
 void setZ(int zval);
 void print(); // override the inherited print
};

// ***protected: gives access to methods of classes that inherit from Circle

Specialization: inheritance heirarchies

● we can build a heirarchy in which classes get more and
more specialized as they inherit: each new class adds just
the extra fields/methods needed for its specialization

vehicle

air land sea

boat subglider prop jet 2wheel 4wheel

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

