

Quick intro to debugging

● debugging is an inevitable part of software development
● good coding habits help us reduce the amount and difficulty of
debugging
 - top down design
 - following code standards
 - iterative development
● good testing skills help us identify problems early in development
● good debugging skills can simplify the debugging process
● learning to use a debugging tool can also help significantly

reduce the likelihood of problems

● follow code standards as you write the code, rather than
cleaning the code up later (otherwise you're debugging the
sloppy/hard to read code)

● use iterative development, so bugs are likely to be in (or
closely related to) the newly added code

● don't use fancy tricks to shorten your code, it makes it
harder to read, maintain, and debug

● split complicated expressions into simpler steps, store
intermediate values in variables

debugging tips

● identify how to consistently reproduce the problem, the first step
in identifying what's going wrong

● focus on one problem at a time (e.g. the first compiler
warning/error)

● try explaining the problem to someone else (this helps organize
your own thoughts)

● get someone else to look at the code
● take a break (coffee/shower/sleep/whatever) and come back

with fresh eyes
● learn to use a debugger (e.g. gdb or ddd on our servers)

Learn to spot common problems

● stack overflow often comes from runaway recursion
● segmentation faults often come from array/pointer issues
● if compiler complains about variables not declared in current

scope or about undeclared functions: check for typos in the
declaration or where you're using it (and check that you really
have declared the item inside the right function)

● if you're getting large/weird values, check for uninitialized
variables, or missing error-checking on user input

● look for typos like = instead of == for comparisons

Hypothesize and check

● for harder to spot bugs, try to come up with a few theories
as to what is likely to be wrong and think of ways to
test/check them

● ways to test/check might involve the input/data
combination we've been using to recreate the error, plus
examination of variables/values inside the program using
extra output statements (e.g. cout the value of a parameter
or variable) or using a debugger to follow the changing
values

debuggers: gdb on our servers

● (ddd is available as a graphical version of gdb)
● we have to add a special -g option when compiling, so the

compiler adds extra information for the debugger
 g++ myprog.cpp -o myprogx -g -Wall -Wextra

● start the debugger, telling it the name of the executable
 gdb ./myprogx

● the debugger spews a bunch of text while initializing, then
gives you a text prompt (gdb) and waits for commands

basic gdb commands

● to exit the debugger, enter the command quit
● to run the program, enter the command run
● if the program crashes, enter the command backtrace

(this shows you the sequence of function calls that were
active when it crashed, and which lines of the program those
calls came from)

setting breakpoints

● before we run the code, we can tell the debugger to pause
if/when it gets to a specific line or function (called setting a
breakpoint)

● to stop in a function use: break thefuntionname
● to stop at a line number use: break thelinenumber
● gdb will run the program normally until it hits a breakpoint,

then will pause and wait for you to enter debugger
commands

stepping through code

● when paused (e.g. at a breakpoint) we can go through one
instructions at a time using either s or step

● if we want to treat a function call as one step (rather than
going into the function and stepping through the inside of
it) we can use next or n

● if we want to resume running normally (until the next
breakpoint) we can use continue or c

Examining variables/parameters

● when paused while inside a function we can get gdb to
display the current value of a variable or parameter using

● p or print and the variable or parameter name, e.g. p x

more info

● there are many many more gdb commands and options,
and many other debuggers available

● for more on gdb in our systems, see the csci 265 notes
– csci.viu.ca/~wesselsd/courses/csci265/slides/gdb.pdf
– www.youtube.com/watch?v=qaUMwRUi6wc

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

