

Intro to program testing

● we generally want to be sure that our programs work correctly
● the only way to be sure is to test the programs on actual data
● the test cases we use should check the program handles valid
data correctly, and also that it performs error checking and
handling correctly
● ideally, we should think of a collection of test cases before (or at
least independently of) the actual code we're writing -- nearly
every statement in the requirements/specifications for a program
should give us more ideas on test cases we should create and
use

Input and expected output

● for each test case we think of, we should have:
– a reason for the test case (why we want to test that case in

particular)

– the exact input data that the user would supply for the test case

– the exact output we think the program should display for the
test case

Manual vs automated testing

● we could manually type in and check each test case every
time we want to test an updated version of the program,
but that is slow/error prone

● we can instead create a file to hold the input data, another
to hold the expected output, and eventually store the
actual program output in a third

 ./myprogx < inputfile > actualoutput

● we can compare the actualoutput with the expectedoutput
using the following command

 diff actualoutput expectedoutput

Example: read/display a time

● suppose a program is supposed to prompt the user to
enter the hour and the minutes for a time, check they are
valid, then display the results in the format h:mm

● a sample run of the program might look something like
 please enter the hour (1-12)

 10

 please enter the minute (0-59)

 27

 the time is 10:27

Creating a test case
● our test case for that particular run would have an input file that

just contained the user input, i.e. just the 10 and 27
 10

 27

● the expected output file would contain exactly what we expect
the program to cout/printf as it runs, i.e.

 please enter the hour (1-12)

 please enter the minute (0-59)

 the time is 10:27

● the diff command would show the line-by-line differences
between the output actually produced and the output expected

Thinking up test cases

● most programs require a great many test cases, e.g. in our time
example we would want different cases to cover

– the smallest valid hour (1) and the largest (12)
– the smallest valid minute (0) and the largest (59)
– the hours just “outside” the valid range (0 and 13)
– the minutes just outside the valid range (-1 and 60)
– a variety of valid times
– a variety of invalid times

● for each, our sample output must reflect all prompts, error
messages, and other output we expect that case to generate

Automating testing

● using a text editor, we can put the user input data for a test case into a file
(i.e. the exact lines of text we would usually type as the program runs)

● suppose we usually have to type in our name and two numbers as the
program ran, then the test file content might look like

 dave

 128

 6.4

● the < and filename can be used to run our program but have it read
its input from the file instead of from the keyboard

 ./myprogx < mytestcasefile

● this allows us to quickly re-run the program on a test case without
manually retyping each time (faster, less chance of error)

Automating multiple test cases

● if we have multiple such test cases to run, we could run them
from the command line, e.g.

 ./myprogx < testfile1

 ./myprogx < testfile2

 etc

● or we could put all these commands into yet another file, e.g.
called runmyfiles, and then tell the bash command interpretter
to run all of them in sequence:

 bash runmyfiles

● this is much faster, and eliminates the chance of missing
any test cases

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

