Example: resizable circular buffers

» Using an array implementation for a queue

» Can insert/remove one element at a time

* Insert new elements after the last/back current element
 Remove elements from the front

* Inserts might reach end of array when space is available at the
front, so will have the end “wrap-around” to the front

* Dynamically-allocate the array with arbitrary size at start

o |f the array is completely full we dynamically allocate a new one,
twice as big, move everything across and delete old one



Wrap-around example

array of size 5 (so positions 0,1,2,3,4)

sequentially insert values 10, 17, 30, 29 (in positions
0,1,2,3)

do 2 removes (takes out the 10,17, positions 0,1 now free)
insert 63 (position 4)

iInsert 8 - have reached end of array for insert positions,
but the front (positions 0 and 1 right now) are available, so
iInsert at position 0



Keeping track of front/back

» keep track of which array positions currently hold the first
(front) element and the last (back) element

« set front and back to -1 whenever buffer is empty

 when insert into empty buffer, put in position O (front and
back both 0O since it is both first and last right now)

* increment front on inserts, increment back on removes

 for array of size N, when front == N move front to 0 and
when back == N move back to 0



Keeping track of current “size”

e Can keep track of number of currently stored elements
using with separate variable, e.g. currsize=0 initially,
increment/decrement with insert/remove

« always remember to check currsize > 0 before remove and
currsize < array size before insert

» special cases when we remove only element in buffer (set
front/back to -1) or when we insert element in empty buffer
(set front/back to 0)



Don't absolutely need size variable

« Can keep track of current size using just front/back

 if no wrap around currently in use, current size is simply
back + 1 - front

 if wrap around is in use (i.e. back < front) then this will be
negative, off by N (allocated array size), so add N

« we know buffer is empty if front/back are both -1



Use of modulo with wrap around

« suppose we want the i'th element of those currently stored
(i.e. offset from the front)

 if we know front, back, and N then we can compute whre
In the array the ith element is stored using

(front +i) % N

 if no wrap around in use, or the ith element is before the
wrap around point, this gives same as front + |

e if i is after a wrap around point then this gives correct
position at front of array



Resizing the buffer

 If we ever completely fill the buffer and need to do another
insert then we need a new bigger buffer

- will allocate a new one twice as big (and check it worked)
- copy the content across to new buffer

- change our array pointer to point to the new one

- delete the old one



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

