

Copy and move constructors

● it's common for us to want to initialize a new object as a copy of
an existing one: hence a copy constructor
● the compiler will also make use of copy constructors for things
like pass-by-value and evaluation of expressions involving objects
● sometimes we want to move content from one object to a new
one: hence a move constructor
● again, the constructor will sometimes take advantage of move
constructors if we've provided them

Copy constructor

● copying contents of one object to another
● pass the original as a parameter to the new one
● typically pass the original by reference (for efficiency) but

as a const so it cannot accidentally be altered
class example {
 private:
 ...
 public:
 example(const example &orig);
}

int main()
{
 example e1;
 ...
 example e2(e1); // copy e1 content into e2

Default copy constructor

● a default copy constructor is automatically created, does a
field-by-field copy

● works fine if all the fields are simple types
class circle {
 private:
 int x, y;
 float radius;
 public:
 circle();
 void set(int xv, int yv, float rv);
};

void circle::set(int xv, int yv, float rv) {
 x = xv; y = yv; radius = rv;
}

int main()
{
 circle c1;
 c1.set(1,2,3);
 circle c2(c1);
 // implicitly created default copy constructor
 // does c2.x = c1.x
 // c2.y = c1.y
 // c2.radius = c1.radius

Shallow vs deep copy

● if the original contains more complex types then the default
“shallow copy” approach may be inadequate

– e.g. suppose one field is a pointer for a dynamically allocated
array:

● the default only copies the pointer, thus both objects have pointers to
the same array

● we probably want the new object to have its own full copy of the array

class example {
 private:
 int size;
 float* arr;
 ...
};

int main()
{
 example e1;
 ...
 example e2(e1);
 // sets e2.arr = e1.arr, so they both access
 // the same actual array in memory

Creating our own “deep” copy

● need to create a full duplicate of the original

class example {
 private:
 int size;
 float *arr;
 public:
 example();
 example(const example& orig);
 ...
};

example::example(const example& orig)
{
 size = orig.size;
 // create a new array for the copy
 arr = new float[size];
 // copy the contents from the original array
 for (int i = 0; i < size; i++) {
 arr[i] = orig.arr[i];
 }
}

Move constructors

● actually move the content from one object into a new one, removing it
from the original

● uses && syntaxto reference the original and std::move to invoke the
move

class example {
 private:
 int size;
 float* arr;
 public:
 example(example &&orig);
 ...
};

int main()
{
 example e1;
 ... assuming we do stuff to fill e1 ...
 ... then later we want to move e1's content into
 ... a new example, e2...
 example e2 = std::move(e1);

move constructor continued

● as with copy constructors, this is most important when dealing
with dynamically allocated/complex fields

● want to be sure the move genuinely *moves* the content,
removing from original

example::example(example &&orig)
{
 size = orig.size;
 arr = orig.arr;
 orig.arr = NULL;
 orig.size = 0;
}

aside: rvalues &, lvalues &&

● the & reference syntax is commonly referred to as an lvalue

● the && syntax is commonly referred to as an rvalue

● rvalues can even be used to reference values that are usually only
stored temporarily

● the item referenced by the && will actually be maintained in memory
as long as the reference variable is in scope

// trivial example:
int &&rval = 20;
// usually the 20 would have been dropped from memory by this point,
// but now it will be held there until rval goes out of scope
// ... can be used to keep results of a computation accessible for reuse ...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

