Dynamic binding of methods

* by default in C++ the data type of a variable/parameter is used to
determine which method is called through it

» the compiler can determine this at compile time, called static binding

void dosomething(shape *s) {
s->somemethod(); // s is a shape, so call shape::somemethod

%

e suppose circles and squares are derived from shape, and override the
inherited shape version of somemethod
« dosomething still just calls shape's version

circle c;

absomething(&c);

Dynamic binding

« dynamic binding is when the compiler inserts code so that
during execution the most suitable method is called

- under dynamic binding, s->circle::dosomething() would have
been called in the previous example

* in C++ we specify we want methods dynamically bound
using the virtual and override keywords

class shape { class circle: public shape {

virtual void dosomething(); virtual void dosomething() override;

- -

Usefulness of dynamic binding

* we might have a large inheritance tree of objects descending from
one base class

« we might have functions doing very similar things to/with all these
objects, and want the functions to call the correct methods for each

« under static binding we'd need a special function for each class, e.qg.

- void dosomething(circle* c);
- void dosomething(square* s);

« under dynamic binding we can have a single function
- void dosomething(shape™ s)
« avoids lots of code repetition, works on any class derived from shape

Example: games

e games may have thousands of object types (NPCs, player
characters, rocks, chairs, flowers, cars, guns, etc etc etc)

« there are many actions that can be applied to each (move the
object, create the object, paint the object, interact with the
object, etc etc)

 allows the main game processing cycle to be something like:
- create a bunch of objects
- repeat until game over:

» detect next event that takes place & which object affected
« call update function, passing event and object pointers

Example: display/drawing programs

e suppose we have a program to draw things on the screen, or to
allow the user to edit drawings

« potentially thousands of different kinds of shapes/objects can be
drawn

« a common set of actions apply to each: redraw, rotate, resize,
destroy, change colour/texture, etc

e again, the main processing cycle can be:

- detect what the user wants to do next and to which shape
- call an update function passing the shape and action

Example: data storage/lookups

« our labs used linked lists and binary search trees to store/lookup data
» the parts that interacted with the user look almost identical, repeatedly:

- ask the user what they want to do next

- call process function to get more information from them and call the
appropriate insert/lookup/etc

« with dynamic binding we could try:
- set up a base class, DataStore, from which we derive our lists and trees
- in the main routine user first gets to pick their desired storage type

- process takes a DataStore™ parameter, we pass it either the bstree or
list and its call to insert/lookup/etc uses the correct overridden method

Data store of key/value string pairs

class DataStore
{ void Process(DataStore* s, char userCmd)

public: {
DataStore(); _ -
~DataStore(); if ((userCtm"()== P') && (s != NULL)) {
irtual bool insert(string k, stri - S->printall();
e o [aoeriting f Stind) } else if ((userCmd =="T) etc ...

virtual bool lookup(string k, string& v);

virtual bool remove(string k);

virtual void printall(): }
virtual int getsize();

|5

class List: virtual public DataStore {
private:
...whatever we need for linked list implementation...
public:
... constructors, destructors, then for each inherited method:
virtual bool insert(string k, string v) override;

|

Pure virtual methods

» instead of a base class providing an actual implementation of a
method they can define it as a pure virtual method

« done by assigning 0 instead of giving an implementation
« they have no implementation so MUST be overriden by descendants
class DataStore {
;/.i.rtual bool insert(string k, string v) = 0; // we assign 0, DataStore never gives a body for insert
\
class List: virtual public DataStore {

;/.i-rtual bool insert(string k, string v) override; // List MUST override insert

-

Abstract base classes

» classes that declare pure virtual methods (like DataStore in previous
slide) are called abstract base classes

e you cannot create an instance of an abstract base class (since it has
no implementation for at least one method)

« you can still use pointers to abstract base classes for dynamic
binding, but what you actually pass to it will be a descendant

void process(DataStore* s, char cmd) int main() { |
{ List *L = new List;

- "~ process(L, P'):

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

