

Dynamic binding of methods

● by default in C++ the data type of a variable/parameter is used to
determine which method is called through it
● the compiler can determine this at compile time, called static binding

● suppose circles and squares are derived from shape, and override the
inherited shape version of somemethod
● dosomething still just calls shape's version

void dosomething(shape *s) {
 s->somemethod(); // s is a shape, so call shape::somemethod
};

circle c;
...
dosomething(&c);

Dynamic binding

● dynamic binding is when the compiler inserts code so that
during execution the most suitable method is called
– under dynamic binding, s->circle::dosomething() would have

been called in the previous example

● in C++ we specify we want methods dynamically bound
using the virtual and override keywords

class shape {

 virtual void dosomething();

};

class circle: public shape {

 virtual void dosomething() override;

};

Usefulness of dynamic binding

● we might have a large inheritance tree of objects descending from
one base class

● we might have functions doing very similar things to/with all these
objects, and want the functions to call the correct methods for each

● under static binding we'd need a special function for each class, e.g.

– void dosomething(circle* c);

– void dosomething(square* s);

● under dynamic binding we can have a single function

– void dosomething(shape* s)
● avoids lots of code repetition, works on any class derived from shape

Example: games

● games may have thousands of object types (NPCs, player
characters, rocks, chairs, flowers, cars, guns, etc etc etc)

● there are many actions that can be applied to each (move the
object, create the object, paint the object, interact with the
object, etc etc)

● allows the main game processing cycle to be something like:

– create a bunch of objects
– repeat until game over:

● detect next event that takes place & which object affected
● call update function, passing event and object pointers

Example: display/drawing programs

● suppose we have a program to draw things on the screen, or to
allow the user to edit drawings

● potentially thousands of different kinds of shapes/objects can be
drawn

● a common set of actions apply to each: redraw, rotate, resize,
destroy, change colour/texture, etc

● again, the main processing cycle can be:

– detect what the user wants to do next and to which shape
– call an update function passing the shape and action

Example: data storage/lookups

● our labs used linked lists and binary search trees to store/lookup data

● the parts that interacted with the user look almost identical, repeatedly:

– ask the user what they want to do next

– call process function to get more information from them and call the
appropriate insert/lookup/etc

● with dynamic binding we could try:

– set up a base class, DataStore, from which we derive our lists and trees

– in the main routine user first gets to pick their desired storage type

– process takes a DataStore* parameter, we pass it either the bstree or
list and its call to insert/lookup/etc uses the correct overridden method

Data store of key/value string pairs

class DataStore {
 public:
 DataStore();
 ~DataStore();
 virtual bool insert(string k, string v);
 virtual bool lookup(string k, string& v);
 virtual bool remove(string k);
 virtual void printall();
 virtual int getsize();
};

class List: virtual public DataStore {
 private:
 ...whatever we need for linked list implementation...
 public:
 ... constructors, destructors, then for each inherited method:
 virtual bool insert(string k, string v) override;
};

void Process(DataStore* s, char userCmd)
{
 if ((userCmd == 'P') && (s != NULL)) {
 s->printall();
 } else if ((userCmd == 'I') etc ...

}

Pure virtual methods

● instead of a base class providing an actual implementation of a
method they can define it as a pure virtual method

● done by assigning 0 instead of giving an implementation

● they have no implementation so MUST be overriden by descendants

class DataStore {
 ...
 virtual bool insert(string k, string v) = 0; // we assign 0, DataStore never gives a body for insert
 ...
};

class List: virtual public DataStore {
 ...
 virtual bool insert(string k, string v) override; // List MUST override insert
 ...
};

Abstract base classes

● classes that declare pure virtual methods (like DataStore in previous
slide) are called abstract base classes

● you cannot create an instance of an abstract base class (since it has
no implementation for at least one method)

● you can still use pointers to abstract base classes for dynamic
binding, but what you actually pass to it will be a descendant

void process(DataStore* s, char cmd)
{
 ...
}

int main() {
 List *L = new List;
 ...
 process(L, 'P');
 ...
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

