
  

Inheritance and classes

● sometimes we want to create a new class that is a specialized form of 
an existings class
● we'd like to avoid simply replicating the code for the original, would 
rather have some way of re-using it/incorporating it
● we can create new classes that inherit fields and methods from 
previously defined classes
● the original class is called the base class, the new class is called the 
derived class (sometimes called the parent and child classes)
● the derived class can use the inherited fields/methods, but can also 
override some of them with new versions



  

Conceptual example

● suppose we have a simulation with lots of types of land vehicles 
(cars, motorcycles, bicycles, unicycles, etc)

● we might create an initial vehicle class with fields and methods 
that would be needed by all vehicles

● we might derive a motorized class from vehicle, with fields and 
methods used by all powered vehicles

● we might derive an automobile class from motorized, with 
fields specific to automobiles

● at each level of inheritance we add just the extra functionality 
needed for the new specialization



  

Syntax for declaration

● in the derived class declaration we specify which class we're 
inheriting from

● class mynewclass: public thebaseclass { ... rest of class def }

– (we'll talk about that public keyword later)
● the new class gets copies of all the fields and methods from the 

base class, and can declare its own additional fields and 
methods

● it can also override inherited methods, providing its own version 
of them



  

Today: simple static binding

● today we'll focus on simplest form of inheritance
● called static binding
● involves minimal use of keywords, but limits flexibility at 

runtime
● tomorrow we'll introduce the use of more keywords (virtual, 

override, final, etc) and discuss static vs dynamic binding



  

Inheritance example

class vehicle {
   private:
       float weight;
   public:
        vehicle();
        ~vehicle();
        void setwt(float w);
        float getwt();
        void print();
};

class motorized {
   private:
       float horsepower;
   public:
       motorized();
       ~motorized();
       void sethp(float hp);
       float gethp();
       void print();
};
// inherits methods
//   vehicle, ~vehicle
//   setwt, getwt, print
// inherits a weight field
//    but can't access it directly in motorized methods
//          would have to go through getwt/setwt

int main()
{
     motorized m;
     m.setwt(300);
     m.sethp(15);
     m.print(); // uses motorized print
}



  

Accessing overridden methods

● motorized inherited vehicle's print, but overrode it with it's own 
print

● can still access the original using vehicle::print() 
(classname::methodname)

int main()
{
     motorized m;
     m.setwt(300);
     m.sethp(15);
     m.print(); // uses motorized print
     m.vehicle::print(); // uses vehicle print, only displays the weight field
}



  

Accessing globals with ::

● sometimes within a class we'll use the same field/method 
name as an existing global constant/variable/function
– e.g. a local field X and a global variable X

● to access the global from inside the class we can use :: 
and the global's name
– e.g. to access the global X instead of the local X:

● ::X = whatever;



  

private, public, and protected

● private fields and methods do get inherited, but cannot be 
directly called/accessed inside the derived class methods

● public fields and methods are inherited and usable
● there is a third type: protected

– these are not visible to outside functions/methods (e.g. main)

– but they are accessible to derived classes

– e.g. supposed vehicles has a protected field named topspeed
● the derived motorized class can access the inherited field directly
● functions/methods that aren't derived from vehicles cannot access 

topspeed directly



  

private,protected,public example

class parent {
   private:
       int x;
   protected:
       int y;
   public:
       int z;
};

class child: public parent {
   private:
      int A;
   protected:
      int B;
   public:
      int C;
};

class grandchild: public child {
    // inherits A,B,C from child
    // inherits x,y,z from parent through child
    // but can't access x or A fields directly
    //       since they were declared private
};

● chains of inheritance can go as deep as desired
● here grandchild is derived from child, which is derived from parent
● grandchild has everything from all its ancestors
● (it can't directly access anything they made private, it would have to 

access those through the ancestors' protected/public methods)



  

Order of constructors/destructors

● constructors run from earliest ancestor to latest descendant
● if we declared a grandchild object

– parent constructor runs, initializing its fields

– child constructor runs, initializing its fields (may adjust inherited 
fields)

– grandchild constructor runs, initializing its fields (may adjust 
inherited fields)

– makes sense if we think of the inheritance as marking 
specializations: each constructor initializes its associated fields, 
but the derived classes can then alter/customize

● destructors run in the opposite order (grandchild first, parent last)



  

Constructor/destructor order

class First {
   public:
      First() { cout << “cons 1st\n”; }
     ~First() { cout << “dest 1st\n”; }
};

class Second: public First {
      Second() { cout << “cons 2nd\n”; }
     ~Second() { cout << “dest 2nd\n”; }
};

class Third: public Second {
      Third() { cout << “cons 3rd\n”; }
     ~Third() { cout << “dest 3rd\n”; }
};

int main()
{
   Third x;
}

resulting output would be:
   cons 1st
   cons 2nd
   cons 3rd
   dest 3rd
   dest 2nd
   dest 1st 



  

Inherit public, protected, private

● we showed definition of form 

– class child: public parent {
● can also use private or protected, e.g.

– class child: protected parent {

– class child: private parent {
● sets the minimum privacy settings for inherited fields/methods

– public: inherited field has same setting as in the parent class

– protected: inherited public fields become protected in derived 
class (protected/private stay the same)

– private: everything inherited becomes private in derived class



  

Example: queue inheriting from list

● will treat queues as specialization of a list

● list class (for a list of string)
– a variety of typical methods:

● insert at front
● insert at back
● remove from front
● remove from back
● print list

● queue class (inherits from list)
– typical queue methods:

● insert at back
● remove from front
● print list



  

list and queue class definitions

class list {
   private:
      // details don't matter here
   public:
      list();
     ~list();
      bool insertFront(string s);
      bool insertBack(string s);
      bool removeFront(string& s);
      bool removeBack(string& s;
      void print();
};

// inherit privately so people can't use our
// queue as if it was a list, denies them direct
// access to the list methods
class queue: private list {
   public:
      queue() {  } // uses list constructor
     ~queue() { } // uses list destructor

     bool enqueue(string s)
         { return insertBack(s); }
     bool dequeue(string &s)
         { return removeFront(s); }

     void print()
         { list::print(); } // redirects to list's print 
};


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

