Inheritance and classes

e sometimes we want to create a new class that is a specialized form of
an existings class

* we'd like to avoid simply replicating the code for the original, would
rather have some way of re-using it/incorporating it

 we can create new classes that inherit fields and methods from
previously defined classes

e the original class is called the base class, the new class is called the
derived class (sometimes called the parent and child classes)

e the derived class can use the inherited fields/methods, but can also
override some of them with new versions

Conceptual example

e suppose we have a simulation with lots of types of land vehicles
(cars, motorcycles, bicycles, unicycles, etc)

« we might create an initial vehicle class with fields and methods
that would be needed by all vehicles

* we might derive a motorized class from vehicle, with fields and
methods used by all powered vehicles

* we might derive an automobile class from motorized, with
fields specific to automobiles

» at each level of inheritance we add just the extra functionality
needed for the new specialization

Syntax for declaration

 in the derived class declaration we specify which class we're
inheriting from

« class mynewclass: public thebaseclass { ... rest of class def }

- (we'll talk about that public keyword later)

« the new class gets copies of all the fields and methods from the
base class, and can declare its own additional fields and
methods

it can also override inherited methods, providing its own version
of them

Today: simple static binding

« today we'll focus on simplest form of inheritance
 called static binding

 involves minimal use of keywords, but limits flexibility at
runtime

« tomorrow we'll introduce the use of more keywords (virtual,
override, final, etc) and discuss static vs dynamic binding

Inheritance example

class vehicle { class motorized { int main()
private: private: {
float weight; flqat horsepower; motorized m:
public: public: m.setwt(300);
vehicle(); motorized(); m.sethp(15);
~vehicle(); ~motorized(); m.print(); // uses motorized print
void setwt(float w); void sethp(float hp);)
float getwt(); float gethp();
void print(); \ void print();
3 :

// inherits methods

I/l vehicle, ~vehicle

/I setwt, getwt, print

// inherits a weight field

/[but can't access it directly in motorized methods
// would have to go through getwt/setwt

Accessing overridden methods

« motorized inherited venhicle's print, but overrode it with it's own
print

 can still access the original using vehicle::print()
(classname::methodname)

int main()
{
motorized m;
m.setwt(300);
m.sethp(15);
m.print(); // uses motorized print
m.vehicle::print(); // uses vehicle print, only displays the weight field

Accessing globals with ::

e sometimes within a class we'll use the same field/method
name as an existing global constant/variable/function

- e.g. alocal field X and a global variable X

« to access the global from inside the class we can use ::
and the global's name

- e.g. to access the global X instead of the local X:
e X = whatever;

private, public, and protected

 private fields and methods do get inherited, but cannot be
directly called/accessed inside the derived class methods

* public fields and methods are inherited and usable

» there is a third type: protected
- these are not visible to outside functions/methods (e.g. main)
- but they are accessible to derived classes

- e.g. supposed vehicles has a protected field named topspeed

» the derived motorized class can access the inherited field directly

» functions/methods that aren't derived from vehicles cannot access
topspeed directly

private,protected,public example

class parent { class child: public parent { class grandchild: public child {
private: private: / inherits A,B,C from child
int X; int A; /] inherits x,y,z from parent through child
protected: protected: // but can't access x or A fields directly
inty; int B; /I since they were declared private
public: public: };
int z; int C;
3 3

 chains of inheritance can go as deep as desired
* here grandchild is derived from child, which is derived from parent

« grandchild has everything from all its ancestors
* (it can't directly access anything they made private, it would have to
access those through the ancestors' protected/public methods)

Order of constructors/destructors

e constructors run from earliest ancestor to latest descendant

 if we declared a grandchild object

- parent constructor runs, initializing its fields

- child constructor runs, initializing its fields (may adjust inherited
fields)

- grandchild constructor runs, initializing its fields (may adjust
inherited fields)

- makes sense if we think of the inheritance as marking
specializations: each constructor initializes its associated fields,
but the derived classes can then alter/customize

« destructors run in the opposite order (grandchild first, parent last)

Constructor/destructor order

class First {
public:
First() { cout << “cons 1st\n”; }
~First() { cout << “dest 1st\n”; }

X

class Second: public First {
Second() { cout << “cons 2nd\n”; }
~Second() { cout << “dest 2nd\n”; }

%

class Third: public Second {
Third() { cout << “cons 3rd\n”; }
~Third() { cout << “dest 3rd\n”; }

X

int main()

{
Third x;

}

resulting output would be:
cons 1st
cons 2nd
cons 3rd
dest 3rd
dest 2nd
dest 1st

Inherit public, protected, private

« we showed definition of form
- class child: public parent {
e can also use private or protected, e.qg.
- class child: protected parent {
- class child: private parent {
« sets the minimum privacy settings for inherited fields/methods

- public: inherited field has same setting as in the parent class

- protected: inherited public fields become protected in derived
class (protected/private stay the same)

- private: everything inherited becomes private in derived class

Example: queue inheriting from list

» will treat queues as specialization of a list

« list class (for a list of string) e queue class (inherits from list)

- a variety of typical methods: - typical queue methods:
* insert at front * insert at back
» insert at back * remove from front
 remove from front o print list

* remove from back
o print list

list and queue class definitions

class list { // inherit privately so people can't use our
private: // queue as if it was a list, denies them direct
/[details don't matter here // access to the list methods
public: class queue: private list {
list(); public:
~list(); queue() { }// uses list constructor
bool insertFront(string s); ~queue() { } // uses list destructor
bool insertBack(string s);
bool removeFront(string& s); bool enqueue(string s)
bool removeBack(string& s; { return insertBack(s); }
void print(); bool dequeue(string &s)
b { return removeFront(s); }
void print()

{ list::print(); } // redirects to list's print

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

