

More on classes, methods, functions

● we can provide the implementation of a method within the class
definition
● we can create constructors that take parameters
● constructors can declare initializer lists - values to use when
initializing the class fields
● we can identify functions/methods as “inline”: an optimization
suggestion for the compiler

method defs within the class def

● places the code for the method directly inside the class
definition instead of having it outside

● can mix & match: do some internally, some externally

// implementation external
class example {
 public:
 void hi();
};

void example::hi()
{
 cout << “Hi!”;
}

// implementation internal
class example {
 public:
 void hi() {
 cout << “Hi!”;
 }
};

Parameterized constructors

● constructors can have parameters, and can use default values
● caller passes the parameters when declaring/creating instance

class circle {
 private:
 int x, y, radius;
 public:
 example();
 example(int xv, int yv, int rv=1);
};

circle::circle(int xv, int yv, int rv)
{
 x = xv; y = yv; radius = rv;
}

int main()
{
 circle c1; // uses default constructor
 circle c2(5,6); // uses parameterized, default for rv
 circle c3(1,2,3); // uses parameterized
 circle *cptr = new circle; // uses default
 circle *cptr2 = new circle(2,4,6); // uses parameterized
 ...
}

As with overloading functions, we need to ensure
there is no possible ambiguity about which
constructor could be called.

Initializer lists

● constructors can be followed by an initializer list,
identifying values to be used to initialize fields

● again need to be sure there is no possible ambiguity about
which constructor version should be called

class circle {
 private:
 float x, y, radius;
 public:
 // example: initializer list and empty body
 circle(): x(0), y(0), radius(1) { }
};

Inlining methods/functions

● can suggest “inlining” a method/function as an optimization possibility
to the compiler

● suggests replacing calls to the method/function with a direct
substitution of the function body

● generally only done when body is simple/direct and the overhead of
the function call would be much higher than the execution of the body

class example {
 private:
 int* ptr;
 public:
 inline void nullify() { ptr = NULL; }
};

int main()
{
 example x;
 ...
 x.nullify();
 // instead of method call it turns into x.ptr = NULL;
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

