

Operator overloading and *this

● we can declare new meanings for an operator in the context of a
given class, called overloading
● e.g. for lists perhaps overload = and + to allow L = L1 + L2
● we can only create new meanings for existing operators, we
cannot create new operators
● we cannot change the precedence or associativity of an operator
● we cannot change the number of arguments an operator expects
● we cannot overload . or :: or ?:

Ways to overload

● we can overload operators using a class method
– since it's a method it has access to the private content
– this is the only way to overload assignment operators

● we can overload operators using a friend function
– since it's a friend it has access to the private content

– often used when operand is on right of operator, e.g. with <<
operator, used like “cout << X;” where X is our object

● we can overload operators using a “normal” function
– no private access, so needs sufficient public fields/methods

accessible to do its job

Example: stack class with +=

● take a stack class, implemented in linked list fashion
● overload = operator so “s1 = s2;” makes s1 a copy of s2
● = returns the value it assigns so works with x = y = z;
class stack {
 private:
 struct node { double val; node* next; } *tos;
 public:
 // returns the revised stack, i.e. the value assigned
 // s1 = s2; ... parameter rhs refers to s2
 // pass s2 by ref for efficiency but as const so we don't alter it
 stack& operator=(const stack& rhs);
 ...
};

Stack = implementation

● copy s2 to s1, node by node
● should probably delete any old s1 content (not shown here)
● will discuss the *this shortly

stack& stack::operator=(const stack& rhs)
{
 node* curr = rhs.tos;
 tos = NULL;
 node* currNew = tos;
 while (curr) {
 string k = curr->key;
 string v = curr->value;
 curr = curr->next;
 node *n = new node;
 n->key = k;
 n->value = v;

 n->next = NULL;
 if (currNew == NULL) {
 tos = n;
 currNew = tos;
 } else {
 currNew->next = n;
 currNew = n;
 }
 }
 return *this;
}

“this” pointer

● whenever a class method is called on an object it is
passed a hidden parameter named “this”

● “this” is actually a pointer to the object itself

class example
{
 private:
 int i, j;
 public:
 void set(int ival, int jval);
};

void example::set(int ival, int jval)
{
 i = ival; j = jval;
}

// compiler inserts an extra hidden pointer parameter
void example::set(example *this, int ival, int jval)
{
 i = ival; j = jval;
}

int main()
{
 example e;
 e.set(10,20);
 // compiled call is more like
 // example::set(&e, 10, 20);
}

use of this and *this

● within a method we can use “this” as a pointer to the actual
object

● comes up most frequently when we either want to
– return a pointer to the object, i.e. return this;
– or return the object itself, i.e. return *this;

Using friend function, unary - op

● suppose we want - to act as negation,

– e.g. -x; // negates value inside x
class simpleData {
 private:
 long data;
 public:
 simpleData(int d = 0) { data = d; }
 // will use a friend function to flip sign of data
 friend void operator-(simpleData& rhs);
};

int main() {
 simpleData x(5);
 -x;
 // x.data is now -5
}

void operator(simpleData& rhs)
{
 // can access private fields since
 // we're a friend of simpleData
 rhs.data = -rhs.data;
}

Using friend function, binary << op

● suppose we want to overload <<, e.g. for cout << x << y;
● on the left of << we have the output stream (type ostream) that

we're writing to, on the right of << we have the output data
● << needs to return the updated output stream value
● will use a friend function and our simpleData class again

class simpleData {
 ... same as previous slide ...
 // allows for use of chained <<, e.g. cout << “x is “ << x << end;
 // std::ostream available through iostream library
 friend ostream& operator<<(ostream& outstr, const simpleData& rhs);
};

Overloaded << continued

ostream& operator<<(ostream& outstr, const simpleData& rhs)
{
 // first do the actual output, using the given output stream
 outstr << rhs.data;

 // then return the updated output stream
 return outstr;
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

