

linux standard streams

● linux provides a standard stream for text input, referred to as
stdin. (This stream is used by cin and scanf.)
● linux provides a standard stream for text output, referred to as
stdout. (This stream is used by cout and printf.)
● linux also provides a second output stream for text output, stderr,
that is conventionally used to display error messages. (This stream
is used by cerr.)
● scripts, programs, and linux users are able to redirect the two
output streams to different locations if they wish (perhaps storing
standard output in a file and displaying error messages on screen)

Example using the two streams

● access to both is provided in iostream
– cout << “blah blah blah”; // goes to stdout
– cerr << “blah blah blah”; // goes to stderr

● by default, both streams go to the terminal window, with no
visual distinction for the user

● output redirection, used from the linux command line, does
allow us to pick/choose what goes where

One typical use in error handling

// get user to keep re-entering values until one is valid
int quantity = -1;
do {
 cout << “Enter the number of items desired as an integer:” << endl;
 cin >> quantity;
 if (cin.fail()) { // cin failed: what they entered couldn't have been an integer
 cin.clear(); // gets rid of an error setting cin has stored
 cin.ignore(LineLen, '\n'); // discards the garbage value still sitting in the input buffer
 cerr << “That was not an integer, please try again” << endl;
 }
 else if (quantity < 0) { // it was an integer, but a negative one
 // (note: no need to do a cin.clear or ignore since it successfully read an int)
 cerr << “The value cannot be negative, please try again” << endl;
 }
} while (quantity < 0);

Redirecting I/O

● from the command line we can redirect standard output to
a file using > (the stderr still goes to the screen)

 ./myprogram > somefile

● we can also redirect file content to standard input (so that
cin reads from the file instead of the keyboard)

 ./myprogram < anotherfile

● we can also combine the two

 ./myprogram < anotherfile > somefile

Redirecting stderr

● we can redirect standard err (e.g. the cerr output) using
2>, in which case the standard output still goes to screen

 ./myprogram 2> somefile

● we can redirect both to a file using &>

 ./myprogram &> somefile

● we can also redirect the output of one program to be used
as input to another using the pipe |

 ./firstprogram | secondprogram

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

