

Loops/iteration

● Bash supports a variety of looping constructs, the simplest
being the while loop, e.g.

while [$x -le 5] ; do

echo “$x”
((x++))

done

● Note the use of do/done to delimit the loop body

For loops: C style

● There are two main styles of for loop supported
● C-like for loops are available with the following syntax

for ((x=1; x<10; x++)) ; do
echo “$x”

done

For loops: the in keyword

● The other style of for loop allows you to iterate across a set of values,
using the general style “for X in Y”

● The set of values can be hardcoded, e.g.

for x in a b c ; do
● The set of values can be words in a text string, e.g.

for x in $text; do
● The set of values can be the elements of an array, e.g. the command

line arguments ($@)

for x in $@; do

Iterating across lines of text

● We often find our code going through lines of text (files,
output from other programs/function calls, etc)

● We set the variable IFS to specify the seperator we want to
use, then use the usual “in” syntax, e.g.

IFS=$’\n’
for line in $text; do

echo “$line”
done

Reading file content

● With the < redirect, we can read file contents, e.g.

echo “enter a filename”
read filename
if [-f $filename] ; then

while IFS= read line; do
echo “$line”

done
else

echo “sorry, file $filename not found”
fi

Reading command output

● Similarly, we can read the output from a command, e.g.

while IFS= read line; do
echo “$line”

done <<< $(ls)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

