

Software design

● In earlier courses you’ve been introduced to concepts of
modularity and top down design
● Both ideas allow you to focus on design of one part, while
abstracting away the inner workings of the other parts
● e.g. while working on a high level component, you think of
the abstract view of what the lower level components do –
ignoring the gory details of how they do it
● while implementing a lower level component, you ignore
what the higher level component might be using it for

Top down decomposition

● For system as a whole, we think of who (users/other
systems) it interacts with – what data it takes in, what
processing it does, what data it pushes out

● We then think of it as a small number of key subsystems, and
how they interact with one another

● Then we carry out the decomposition process on each
subsystem, stopping the decomposition “tree” when we reach
components that are simple enough to implement directly

Deciding how to decompose

● For each item we decompose, we need to consider the best
place to do different parts of the task:

● Where does data input, error checking take place
● Where does data storage take place
● Where does data transformation take place
● Where does data output take place

● Want to get good balance of data processing, storage, and
transmission based on the resources available

● Will also look at cohesion and coupling as ways to evaluate the
effectiveness of our decomposition

Balancing loads

● Many complex systems have both server-side and client-side
processing

● Server-side might involve web servers, database servers, various
processing servers (and possibly layers of gateways and mirrors)

● Client-side might involve running apps or programs on user
devices, in browsers, etc

● When picking a design, need to think about the storage and
processing power of the different components, how much data we
need to transfer between the components, and how sensitive the
data is

Coupling and cohesion

● Two common metrics for evaluating a decomposition
● Coupling measures how tightly interconnected different

components are: the more tightly interconnected, the more
difficult it is to change one without also needing to change
the other (i.e. we want loose coupling)

● Cohesion is how much the elements of a component
logically belong together: does everything in the
component truly have some unifying purpose (i.e. we want
tight cohesion)

Cohesion

● Often easier to recognize things that aren’t cohesive:
components that have some chunk of code stuck in just
because we didn’t really have a good idea of where else to put it

● Cohesion can be based on a variety of different unifying
concepts: e.g. code that works on shared data may be grouped
into a component, code that happens in a tight time sequence
might be grouped together, code that interacts with a common
user or other system may be grouped together, etc

Design for the project priorities

● Our design should reflect the long term priorities of the
project

● If the system is expected to be maintained for years, and
to evolve/change substantially, then we need to account
for that in our early design – think about adaptability

● If the system is expected to be fairly static but very
resource limited (e.g. low memory, or poor connectivity, or
limited processing power) then our design priority may
sacrifice coupling/cohesion for efficiency

Design documents

● As with requirements and specifications, designs are usually
carefully documented in (surprise) a design document

● These will also be a mix of plain text, diagrams, examples,
and pseudo-code, meant to give a clear and complete
picture of the design

● As with requirements and specifications, it is important that
design documents include the rationale/priorities upon
which the design is based

● Clearly, design documents should also be thoroughly
reviewed, and kept up to date as the design evolves

Data flow diagrams (DFDs)

● Data flow diagrams are heirarchical collections of
diagrams showing the top-down decomposition of a
system into smaller and smaller components

● Typically they show each component, each data store (file,
database, etc), each external system/user the component
interacts with, and arrows indicating the flow of data
between the elements of the DFD

● DFDs will typically be accompanied by detailed supporting
text descriptions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

