

Git branches and merges
● When we need our code to diverge into two different
versions, we start a new branch of the current repo (git
branch newbranchname)
● it starts as a duplicate, but changes are now made
seperately (e.g. a windows branch and a linux branch)
● Can have multiple branches, which can in turn branch out
again
● We switch to working in a new branch using checkout (git
checkout branchname)

Basic branch commands

● git branch name (creates new branch)
● git branch -D name (deletes branch)
● git checkout name (switch to new branch, make sure

you’ve added/committed or stashed all changes first)
● git branch -m oldname newname (rename branch)
● git branch (shows list of all branch names)

Merging branches

● We can also take two existing branches and merge them together
into a single branch

● Somewhere they have a common ancestor, where they diverged into
different branches

● Files that have changes since then in one branch but not the other
use the changed version

● Files that haven’t changed in either branch (of course) stay the same
● Files that have changed in both branches cause a conflict...

Merge conflicts

● When we have two conflicting versions of a file to merge together, git
warns you of a merge conflict and doesn’t complete the merge until you
resolve the conflict

● If you open the conflicted file, you’ll find the sections with conflicting
changes shown like

Stuff that’s the same
<<<<<<
version from one file
=======
Version from other file
>>>>>>

Resolving conflicts

● Edit the conflicted file to keep the parts you want and
delete the parts you don’t want, make sure you delete the
lines of ==== >>>> <<<<

● Save and do a git add for the file
● The merge will complete when the last conflict is resolved

and you do a git commit
● Now you have a single branch

Visualizing the branches

● You can see the branches visually by running programs
like gitk when you are in the repository, but those won’t run
in a simple text ssh window

● You can get an ascii map of the branches, merges, and
commits using the following command

git log --graph --branches --pretty

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

