

Git remotes, pull, push
● Often we need to coordinate git repositories between multiple
developers
● One primary version is maintained (unfortunately currently named
“master”, hopefully this is changed by git soon)
● Each developer makes their own copy of the primary repo, makes
changes there, and can “push” changes back to the primary (where
they can be merged into it)
● If the primary is changed, devs can pull those changes from the
primary and merge them into their own local copy

Remotes continued

● The primary version may be located on a different server, in
which case we identify the server and the repository we’re
dealing with

● Often there is some centralized organizational structure so that
one person is in charge of keeping a “clean” version of the
primary someplace (controlling what actually gets merged into it
and when)

● The git process our department uses to distribute/collect labs
and projects is one variation of this idea

Using our own copy of a repo

● If we know the url for a repo, we can use clone to create our own
local copy (git clone url)

● We can specify that we want to be able to pull changes from some
central version of the repo (by url), giving a name we’ll use to refer
to it (git remote add name url)

● We can pull from the remote (git pull) or push to the repo we cloned
from (git push)

● We can specify specific branches (git pull remotename
branchname), (git push origin branchname)

Comparing local to remote

● git status will tell us if we’ve got local commits we haven’t
pushed (ahead of master by N commits)

● We can fetch, but not merge in, changes from the primary
repo (git fetch reponame)

● We can then see what’s different (git diff master
reponame/master)

● We can then merge if we wish to (git merge
reponame/master)

	Slide 1
	Slide 2
	Slide 3
	Slide 4

