

Valgrind as debugging tool

● Valgrind is also useful as a debugging tool, displaying
information about potential errors detected during the run of a
program
● Recompile the program using the -g flag first
● Run the program through valgrind as follows:

 valgrind -v ./yourprogram
● Valgrind will produce extra output before/during/after the
program execution, identifying any potential problems it spots

Valgrind for memory checking

● Valgrind can be used to detect memory leaks: cases where
you allocate memory using malloc, calloc, new, etc but
forget to appropriately deallocate it later (via free, delete,
etc)

● To run with memory checking enabled, use the command

valgrind -v –leak-check=full ./yourprogram
● A memory summary will be displayed after the program

ends, broken down into a heap summary and leak
summary

Key types of leaks in summary

● “definitely lost”: probable leaks, the space was allocated
but never deallocated

● “indirectly lost”: also probable leaks: typically because the
memory that contained a pointer to an item was lost (e.g.
you deallocated the root of a tree before deleting its
children)

Suggested order

● First fix all the basic errors found with

valgrind -v ./yourprog
● Then test/fix with basic memory checking

valgrind -v --leak-check=yes ./yourprog
● Finally, use full memory checking

valgrind -v --leak-check=full ./yourprog

	Slide 1
	Slide 2
	Slide 3
	Slide 4

