

Bash argument parsing

● Most scripts accept a variety of command line arguments
● Convention is to accept them in any order, e.g. -v -i -u, or -u
-i -v, or -u -v -i, ... etc
● Some arguments expect a filename or value to follow
immediately after, e.g. g++ -o filename
● It would be helpful to come up with a general scheme for
processing command line arguments, rather than doing a
custom one from scratch for every script

Iterate through args

● Common approach is to iterate through all the command
line arguments

● Each time you see a recognized option, e.g. -v, strip it out
and apply the appropriate settings within your script

● Each time you see an option with a required parameter,
e.g. -o filename, strip them both out and apply the settings

● Anything else in the argument list is something for the
main body of the script to handle, store in an array?

Example: handling args like g++

● Suppose we had a script that processed arguments similar to g+
+, e.g. “g++ -Wall foo.cpp blah.cpp -o progx”

● We see the -Wall, set our script variables for error checking
appropriately, and remove -Wall from the args list

● We see foo.cpp and blah.cpp, don’t recognize them as specific
options, so put them in an array of things to be processed

● We see the -o, grab the filename afterward (progx), set
appropriate settings, and remove them from the args list

● What’s in the array are the args for the script to “really” process:
foo.cpp and blah.cpp

Use of shift

● The shift command takes the front command line
argument (other than the script name) out of the list, e.g.
while [$# -gt 0] ; do

 nextarg=$1 # store whatever is in front

 shift # remove it from the argument list

 echo “${nextarg}” # do something with it

done

Use of case for pattern matching

● We’ll use case to match each argument against the possible patterns, note that
* matches anything and ;; ends processing of an individual case
case $arg in

 -v –verbose)

 echo “we found a verbose flag”

 ;;

 -m)

 echo “we found an m flag”

 ;;

 *)

 echo “we found something else”

 ;;

esac

Example:

● We’ll create a script that accepts the following arguments:
● -v or –verbose to turn on verbose mode (optional, off by default)

● -m followed by some integer value to set a max (optional, 100 by
default)

● The name of a source file (required, must come before destination)
● The name of a destination file (required)

● E.g. some valid runs could look like
scriptname -v file1 file2 -m 23

scriptname somefile -m 66 anotherfile

scriptname firstfile secondfile

Setup script/variable/defaults

#! /bin/bash

vars to hold source and dest filenames

srcfile=""

destfile=""

vars for verbose and max settings

verbose=0

max=100

array for remaining args, count of how many

fixed=()

numargs=0

Iterate through command line args

while [$# -gt 0] ; do

 key=$1

 shift

 case $key in

 -v|--verbose)

 verbose=1

 ;;

 -m|--max)

 if [$# -lt 1] ; then

 echo "error: -m needs a maxval"

 else

 max=$1

 shift

 fi

 ;;

 *)

 fixed+=("$key")

 ((numargs++))

 ;;

 esac

done

Process positional args

if [$numargs -lt 1] ; then

 echo "missing arguments srcfile and destfile"

elif [$numargs -lt 2] ; then

 echo "missing argument destfile"

else

 srcfile=${fixed[0]}

 destfile=${fixed[1]}

 echo "processing ${srcfile} and ${destfile}, max is ${max}, verbose is ${verbose}"

 if [${numargs} -gt 2] ; then

 echo "warning: ignored extra args"

 fi

fi

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

