

Design patterns

● Evolved from practices in OO design, but concepts are more
widely applicable
● General idea: there are some common styles of problem or
system in software design, so we can establish a common
“pattern” for a solution
● Provides a common starting point for explaining (some)
problems and solutions
● Many projects and tools support standardized frameworks
or templates for patterns they encounter frequently

Common use

● Frequently it is possible to express a particular problem or
solution in different ways, possibly start by suggesting a
couple of design patterns as starting point

● Many problems require a customization or combination of
patterns for different parts of the problem

● Be wary of trying too hard to shoe-horn a problem or
solution into any particular pattern

A few broad groups of patterns

● Creational patterns: typically deal with creating an object
or instantiating a class (see Singleton)

● Structural patterns: typically deal with combining or
organizing other classes and objects into more complex
structures that provide more functionality (see Adapter)

● Behavioural patterns: typically deal with the way objects
communicate or interact (see Command, Iterator)

A few pattern examples

● Singleton: patterns where there can only be one instance
of a specific class

● Adapter: converts interface of one class to be compatible
with that of another

● Iterator: supports traversals of all the elements of a data
structure

	Slide 1
	Slide 2
	Slide 3
	Slide 4

