

Refactoring

● Clients often have a large, complex software system that they
have invested heavily in over the years, but no longer meets needs
● Build or purchase/customize a replacement: costly, slow, risky
● Alternative: improve the existing one, or key parts of it
● Variety of possible approaches, depending on nature of
problem(s) being experienced or anticipated
● Easier on modular designs that make good use of abstraction and
have loose coupling

Problem: new functionality needed

● Hopefully “easiest” of the fixes, assuming we have rights
and access to source code and the expertise to attack it

● Identify the appropriate system component(s) for adding or
improving the desired functionality

● Identify if new functionality can be added as a unit of its
own and ‘plugged in’ to the existing component, or if it
needs to be integrated into the existing component

Problem: improved performance needed

● Existing system performance no longer meets our needs (e.g. isn’t fast
enough, uses too much memory, etc)

● Use profiling to identify the portions of the system actually causing the
performance breakdown, project what new target performance needs
to be for future use

● Might need to re-write the relevant component(s), again this is easier if
good design practices were used for it

● Sometimes can make use of pre-processing techniques, e.g. if
bottleneck is slow processing because data reaching the component is
unsorted, can we insert a sorting component just “in front of” the
problematic part?

Problem: altered data/comm formats

● Systems often interact with other systems (servers, software,
databases, etc) with specific data or communication formats

● If one of those other systems change, our existing system may
no longer be able to communicate with it correctly

● Could alter our system’s data handling, but in complex systems
that can be risky

● Alternative: add a component between our system and the one
it is communicating with, to translate between them

Problem: legacy software we can’t update

● Sometimes we don’t have access or rights to source code
for parts of our system, but they no longer meet our needs

● Again, could write a replacement from scratch, but can be
costly/risky, particularly if we’re unsure of inner workings

● Wrappers: write software to encapsulate the legacy
portion. The wrapper adds any desired functionality,
communicates with legacy system appropriately, and
provides us with a better interface

Mix of problems

● By the time a client gets frustrated enough to upgrade an
existing system there are often multiple known problems

● Need to analyze and prioritize the mix of problems, and
look for best blend of solutions to satisfy clients needs

● Typical approach is to come up with several solution
approaches and debate pros/cons of each (risk, cost, time
needed, degree of improvement they provide, etc)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

