

Sample tester (bash)

● Let’s incrementally develop a simple bash script to automate
testing of a program
● Simplifying assumptions:

● program reads from standard input, writes to standard output, takes
no command line arguments
● program is normally supposed to exit with status 0, any other status
represents and error
● for each test case we have two files: one for the input to use, one for
the expected output

Run a test case, check status/output

● Assume variables we use for filenames are
● prog (program under test)

● efile (expected output)
● tfile (test case input data)

● ofile (actual output)

● dfile (differences between expected and actual output)

● Run test case, capture results
“${prog}” < “${tfile}” > “${ofile}”

status=$?

What about runaway output?

● suppose bug in prog produces huge output and we want to
limit amount stored, e.g. using head -c someamount

“${prog}” < “${tfile}” | head -c ${climit} > “${ofile}”

● Problem: piping through head masks access to $?
● maybe run twice? one to capture $? (throw away output),

one to capture output (through head)
“${prog}” < “${tfile}” > /dev/null

status=$?

“${prog}” < “${tfile}” | head -c “${climit}” > “${ofile}”

What about infinite loops/crashes?

● Suppose bug causes infinite loop, we want to terminate program
after some time limit (cpu time), e.g. with ulimit

● set ulimit before each run and enclose in $() so command runs
in subshell, so a program crash doesn’t crash our script

$(ulimit -t “${cpu}”; “${prog}” < “${tfile}” > /dev/null)

status=$?

(ulimit -t “${cpu}”; (“${prog}” < “${tfile}” > | head -c “${climit}” >
“${ofile}”))

Testing program exit status

● Should test status (non-zero means a problem), probably test
after the first run?
$(ulimit -t “${cpu}”; “${prog}” < “${tfile}” > /dev/null)

status=$?

if [“${status}” -ne 0] ; then

 echo “${tfile} failed: non-zero exit status”

fi

Testing output

● After second run, can use diff to compare actual output to
expected, store differences in a file for later examination

(ulimit -t “${cpu}”; (“${prog}” < “${tfile}” > | head -c “${climit}” > “$
{ofile}”))

diff “${ofile}” “${efile}” &> “${dfile}”

● Diff actually returns 0 if files match, non-zero otherwise
● Trick: if command one succeeds run command two, otherwise run

command three: ((cmd1 && (cmd 2)) || (cmd3))
(((diff “${ofile}” “${efile}” &> “${dfile}”) && (echo "${tfile} passed"))
|| (echo "${tfile} failed"))

Now for multiple tests ...

● That was all for a single test case, usually we want to
automate to run entire collections of test cases

● Assume one directory of test input files, another directory
of expected output, and another directory for storing actual
output

● Assume file names match in each directory, e.g. test case
t1 has a file named “t1” in each of the three directories

● Assume we use variables to store the directory names

Iterating through test cases

● For each file in the directory of test case inputs, find the
matching files in the other two directories
for tfile in “${indir}/”* ; do

 # extract just the name of the file

 fname=$(basename “${tfile}”)

 # generate names of other two files

 efile="${expdir}/${fname}"

 ofile="${resdir}/${fname}"

 code for single test case goes here

done

Temporary files

● Can use mktmp to generate a temporary file, one that is
automatically deleted when script ends

● Perhaps use this to store the differences between the two
files, e.g.

● dfile=$(mktemp)

The whole thing

#! /bin/bash

prog="./driverx"

indir="test/infiles"

expdir="test/expOut"

resdir="test/results"

cpu=10

climit=1000

for tfile in ${indir}/* ; do

 fname=$(basename ${tfile})

 efile="${expdir}/${fname}"

 ofile="${resdir}/${fname}"

 dfile=$(mktemp)

 retv=0

 $(ulimit -t ${cpu}; ${prog} < ${tfile} &> /dev/null)

 retv=$?

 if [$retv -ne 0] ; then

 echo "${tfile} failed: non-zero exit status"

 else

 (ulimit -t ${cpu}; (${prog} < ${tfile} 2>&1 | head -c ${climit} > ${ofile}))

 (((diff ${ofile} ${efile} &> ${dfile}) && (echo "${tfile} passed")) || (echo "${tfile} failed"))

 fi

done

What about stderr?

● Suppose program produces stderr output as well
● Should have one test that captures them both together,

making sure they are interleaved correctly (i.e. using 2>&1
then | head)

● Should have one test that separates them so we can
ensure right content goes into each

● Need three expected output files: one for just stdout, one
for just stderr, one for the combined

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

