

Requirements and specifications

● Requirements generally document what the client/user
wants/needs out of a system
● Specifications go further, detailing the technical issues that
must also be accounted for – all the constraints on the
eventual implementation (firewalls? backups? standards?
etc)

Communication/audiences

● Requirements and specifications must each target a wide range of
readers and comprehensively define the system, yet still be clear
for all readers

● Plain text alone not usually sufficient to communicate the
necessary level of detail

● Typically a mix of paragraphs of text, bullet points, charts, images,
diagrams, pseudo-code/algorithms, etc

● Need to be iteratively developed and checked for correctness,
completeness, consistency, and to ensure they are not ambiguous

● 375 (systems analysis) will focus on requirements, we’ll do specs

Requirements gathering

● For systems that many people use/interact with, can be a
complex process to gather all the data on what the system
needs to do

● May use surveys, interviews, group workshops/meetings,
observation of existing workflows, documents, and data

● Need to constantly review and cross reference data,
looking for conflicts, ambiguities, gaps, etc

● Need different user groups to review the requirements as
we write them, to ensure what we’re writing is correct

Specifications: top down, modular

● Much like the traditional design approaches, we’ll generally
take a top-down and modular approach to describing systems

● First describe system as a whole, then how it is broken down
into key components, then describe each component
(possibly breaking it into smaller components in turn, etc)

● Using object oriented breakdown/description of the system
(as interacting objects, possibly arranged in common
patterns) is very similar idea, easily mixed in

Specification document

● Will typically cross-reference with requirements document (and
possibly others)

● Generally begins with high level, easily readable intro that
describes need for system, key functionality/services, top
priorities, and key roles of people and other systems that will
interact with system

● Likely to include table of contents, index, glossary, appendices,
contact info, etc – we want to be able to find key info easily

While writing specs, keep in mind...

● Analysts need to be able to read it, to verify it matches what the
requirements doc

● Project managers, developers, testers, maintainers need to be
able to read it, as the basis for their work

● Needs to be kept up to date as changes are made
● Needs to specify desired functionality under normal

circumstances, but also behaviour in predictable undesirable
events

● Should address quality and performance aspects (standards,
response time, load capabilities, bandwith, memory use, etc)

Avoiding ambiguity, misunderstandings

● Need to ensure everyone gets the same idea of what is being
described (testers, devs, maintainers, etc)

● Need to avoid use of vague/fuzzy terms when writing, where
different readers will have different assumptions about what the
term means

● e.g. “system must be fast” – way way too vague: e.g. do you
mean response time, number of transactions per minute, ???,
and what numerical point do we go from “fast” to “not”?

● Ideally specs should be easily testable: is there some yes/no test
we agree on that shows whether system meets requirement

Non-functional requirements

● Some examples of non functional requirements and metrics to
make the quantifiable

● Speed: transactions/second, screen refresh time, response time
● Size: number of devices or users supported, M/G/T of storage

space required
● Ease of use: training time to learn core tasks [need to identify

what tasks somewhere], frequency of reference to help pages
● Reliability: mean time to failure, average down time/week

Subroutine specs

● Will often be necessary to write specs for individual methods/functions (e.g.
when we write something that others will use)

● Clearly describe purpose (intended use)
● Specify “normal” behaviour, plus exceptions (error handling) and

assumptions (things outside the scope of the component)
● Specify preconditions (what needs to be already in place/completed in

order for the routine/component to work)
● Specify postconditions (what new is true after the routine/component is

finished ... what did it change?)
● Specify inputs (what data does it take in, from where?) and outputs (what

data does it generate, sent to where?)

Detail, clarity, quality

● Be sure to clearly specify data contraints/assumptions
(assumptions common to an entire group of components
or routines may instead be documented at a higher level)

● Be sure to write with all your audiences in mind, actively
seek out feedback (and accept it graciously)

● Have documentation standards that are as clear and
rigourous as your code standards, and follow them

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

