

Test automation

● Whenever we alter our code, we should re-test
● Our collections of test cases can be substantial, and each
test case can be large: manual testing is slow, error-prone
● Ideally, we would like a tool or script that lets us pick a set of
test cases and it runs them, checks the results, and reports
● Continuous testing takes this further, and automates the
process so that whenever we commit a change it
automatically invokes testing/reporting

Test data

● Each test case might involve a variety of data, such as:

● a name or identifier for the case, and text description
● the component(s) under test
● input files
● user input
● command line arguments or parameters
● expected output (stderr and stdout)
● expected side effects (files/directories changed/new content)
● expected return value/exit status

● Our test tool or script should be configurable, knowing how/where to
look for all the relevant parts of a test case

For each test case...

● The test script/tool should obtain all the input information,
● It should run the test case on the specified components
● It should capture all the output, side effects, and return

value/status
● It should compare the results to those expected
● It should generate some form of summary/report on the

test case result (with a configurable level of reporting
detail)

Tools and scripts

● Many different test tools exist, at a variety of price points
and with a variety of features

● We can write our own test scripts/tools in basically any
programming language

● We’re going to develop some basic test scripts in bash
(and eventually apply them to suites of test cases we
develop for the course project)

Configurable test sets

● When designing our test system, we’d like it to be easy to
add, remove, or alter test cases, and to specify sets of test
cases to run

● One idea is to put collections of test cases in directories,
and to specify which tests to run we tell the test script
which directory to use (it then runs all the tests in that
directory)

● We also need to come up with file formats to tell the test
script all the relevant info for a test case (what input data
to use, what results to expect, etc)

Simple example

● Suppose a program gets a filename as a command line argument,
some input data from the user as it runs, and writes results to the
specified file, with a program exit status of 0 if ok and 1 if processing
fails

● Each test case file might contain: a name/description of the test case, a
filename to use as a command line argument, the “user” input data to
use, the expected exit status, and the expected file content after
running

● It would run the program, passing the command line argument and
using I/O redirection to feed the “user input” to stdin, capture the exit
status, capture the resulting file content, and compare them to
expectations

Example cont.

● We create a bunch of directories, each containing a set of
test case files (e.g. one directory for simple valid cases,
another directory for more complex valid cases, another
directory for cases with exit status 1, etc)

● When we run our testing script, we pass it one or more
directory names, and it runs every test case from each of the
directories we mentioned

● For each test case the script prints its name and either
passed or failed, and at the end tells us how many cases
failed in all

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

