

C++ smart pointers

● Handled through the templated shared_ptr class in the
tr1/memory library
● Internally track reference counts and pointer to actual item
● shared_ptr copy constructor and assignment operator adjust
reference counts appropriately for both smart pointers (source
and destination)
● Automatically deallocate resource when reference count 0

Syntax

● Include smart pointer library

#include <tr1/memory>

● Declare smart pointer for desired resource, e.g. for a List

std::tr1::shared_ptr<List> ptrA;

● Request new instance of resource

ptrA.reset(new List);

Syntax (cont.)

● Access resource fields/methods through smart pointer

ptrA->insert(10);

● Copy between smart pointers (updates both ref counts),
implicitly happens when pass smart pointers as params

ptrB = ptrA;

● “nullify” a smart pointer (make it point nowhere)

ptrA.reset();

Weak pointers

● A templated weak_ptr also supported, that allows controlled access
to item but does not change reference count

● Lock method in weak_ptr only allows access if safe (item still exists)

Std::tr1::weak_ptr<List> wptr = ptrA; // make wk ptr refer to existing item

....

If (std::tr1::shared_ptr<List> tmp = wptr.lock()) { // try to access thru weak ptr

tmp->print(); // only gets access to this list method if lock ok’d it

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4

