

Language support for ADTs

● ADTs provide a way of providing an interface to a logical
data type while hiding the underlying implementation
● Will lead naturally to OO considerations as later topic
● Benefits of ADTS well known to CS students:

● Abstraction reduces conceptual load for developers while working
on any one part of the system
● Separation of interface from implementation simplifies maintanance
● Generalized encapsulation facilitates code reuse

Support vs enforcement

● Many languages provide some level of support for user-defined abstract
data types: creating public interfaces and underlying implementations
● Real question is whether the implementation hiding is simply supported or
is it enforced – can your ADT completely hide its underlying implementation
from the programmer using it, e.g. some languages that don’t enforce:

C++ supports, but doesn’t enforce (developer can still see many
implementation details of class in header file)

C doesn’t really even provide much support, structs can encapsulate
data, but (short of function pointers) associated operations need to be
handled through independent functions

ADT feature considerations

● Need syntax for defining both the public interface and hidden
implementation, and linking the two together

● What operations should be supported across all kinds of ADTs? (create,
destroy, copy, access fields/methods, test for equality – same item vs
same content)

● Can some variables/constants be shared across all instances of an ADT?
● Are nested definitions supported (ADTs whose member fields are ADTS,

possibly defined only within the context of the parent ADT?)
● Can we create generic/templated ADTs?

ADT implementation considerations

● How is parameter passing and assignment of ADTs implemented?
(deep copy vs shallow/reference)

● As with earlier discussion of structs, arrays, etc: do instances get
created on stack or in heap?

● For the functions/methods associated with ADT, do we actually
replicate the function/method object code with each instance of the
ADT, or do all instances somehow reference one common object
code block?

● Will get into implementation details with C++ in OO section

	Slide 1
	Slide 2
	Slide 3
	Slide 4

