

Augmenting CFGs

● Context free grammars can check the structure of your token
sequence, but there are many things they simply can’t check, such as

● Checking variables, functions are declared before use
● Checking expression operand/operation types are compatible
● Identifying implicit type conversions where necessary
● Identifying how the values of variables, parameters, etc should be
computed and updated

● To check these things, we need to add/associate extra functionality
on top of our CFG
● Fortunately, lex and yacc (and similar tools such as flex, bison, antlr,
etc) provide us with ways to do this

Context and grammars

● Context free grammars apply their rules without (wait for it)
knowledge of their context!

● Thus a rule knows nothing about what happens before or after, and
is unable to do things like typecheck, or check for declaration-
before-use

● Our “augmentations” involve communicating extra information with
each applied derivation step, identifying the context it is operating in

● this can be by associating extra data with the derivation step itself,
or through global tables (so data can be looked up as needed)

Example: simple expression

● Consider an expression like x*y: we need to know the data
type for each, whether they have been declared, which
specific variable they refer to in overlapping scopes (e.g. if
there is a local x and a global x)

● Consider a possible derivation
mult_expr

simpleMULTmult_expr

IDENTIFIER

y
simple

IDENTIFIER
x

*

Passing info up/down the tree

● Our parse trees can be generated/analyzed recursively,
from our top “start” non-terminal: the leaves or bottom
layer of the recursion is our set of tokens

● As the tree is constructed (the top-down recursive calls)
we can theoretically pass environmental context, such as
the current scope, the currently declared variables, etc

● As the tree is evaluated (the bottom-up returns from the
recursive calls) we can fill in information such as the
specific types of operands in an expression

A lookup table approach

● Many compilers store information about symbols in a table
as they process the source code, giving each symbol a
unique name, storing its type, scope, value (if known), etc

● They can also store information about scopes, giving each
scope a unique identifier and tracking which scopes are
nested in which others

● Between the two tables, whenever a symbol is used in the
source code it is possible to check it has been declared
(and in which scope) and perform type-checking

A lispy approach

● An alternative to global symbol tables is to pass each
function a list of its environment values (which scope it is
in, what variables/functions are visible, what their values
are, etc)

● Recall that the structure of lambda-block-closures and
lambda functions in gcl included three environment lists,
containing just such information

● The environment data passed can become get quite large,
but it also enables lisp functions to parse their own
environment information

lex and yacc

● We’ll do some work with lex and yacc, each of which provides
us with the ability to
● associate a struct with tokens/nonterminals, containing

relevant data
● create C data types and global variables usable in those

derivation steps
● run C code when a derivation step is applied: e.g. to apply

type checking, or to act as a compiler or interpretter and
translate the source code into something else

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

