

Gnu common lisp (gcl)

● We’ll spend the first half of the course examining common
lisp in detail, I’ve posted a ton of code and discussion at

 csci.viu.ca/~wesselsd/courses/csci330/code/lisp/
● Will use the gcl interpretter, /usr/bin/gcl
● Can be used interactively (type gcl on the command line) or
can create lisp scripts (begin with #! /usr/bin/gcl -f)
● Is very much a hybrid language, will try to lean towards
functionally pure solutions, but in places procedural
approaches just make far more sense

A few basics for common lisp

● Everything is a function, even “procedural” actions like
declaring a variable:
(defvar x 10) ; defines x, initializes to 10

; single-line comments, to the right of semi-colon

● The name of the function is the first thing inside the
brackets, e.g. (sqrt 67.6) would be like C-style sqrt(67.5)

● Functions always return a value (default is nil)

Using the interpretter

● Start the interpretter by typing gcl on linux command line
● When it is waiting for you to enter a function call, it will show

the > as a prompt
● When you type in a function call, it will run the function and

display the returned result then give you another prompt e.g.

>(sqrt 25)

25

>

Working in the interpretter

● Run the quit function to exit back to linux, i.e. (quit)
● If a function call crashes, it will print an error message, give

you some numeric choices, and give a nested prompt like >>
● Look for the one with the message “Return to top level” and

enter its number (typically 1) to get back to normal
● You can load a file full of function definitions using

(load “filename”)

Functions and parameters

● Note that things like + and – are functions, called like other
functions, e.g. (+ 10 25) will return 35, (- 6 2) will return 4

● Some functions can accept as many parameters as you
like, e.g. (+ 5 10 3 1) will return 19

● You can compose function calls as deeply nested as you
like, e.g. (+ (* 5 3) (- 10 1)) would give 24

Input using the (read) function

● (read) waits for the user to type in something, reads and
returns it, can enter type the lisp interpretter recognizes:

● 75.5 would be recognized as the floating point value

● 112 would be recognized as the integer value

● “foo” would be recognized as the text string foo

● foo would be treated as a symbol (identifier)

● (10 20 30) would be treated as a list of 10 20 30

● t is the boolean value true, nil is treated as false

● #\f represents the character f

More experimentation

● (+ (read) (read)) would wait for the user to type in two
values, add them together, and return the result

● You’ll get a crash if you try to use invalid data types for an
operation (e.g. if you try to use + on text)

● There are lots of built in data types and functions for each,
we’ll explore at least some of them in the next few weeks

Basic operators

● The common math functions are + - / * min max mod log
sqrt sin cos tan floor ceiling random etc, (expt x y) is used
to raise x to the power y

● The comparison operators are < <= > >= = /=
● Checking equality is a little tricky because of the possibility

of things being of different types, e.g. (= x y) crashes if one
of them is non-numeric

Equality checking

● (equal x y) does structural comparison to see if the contents
are equivalent (e.g. two different lists but with matching
internal values)

● (equalp x y) checks for equivalence (e.g. 3 and 3.0)
● (eql x y) checks if they both refer to the same exact item, or

if one is a variable, one is a literal, and their values match
● (eq x y) checks if they both refer to the same exact item

String operations

● Many many string functions are available, including:
● (length s) returns the length (in characters)
● (elt str i) returns the ith character of str
● (concatenate ‘string s1 s2) returns a string with the

contents of s1 followed by s2
● (string< s1 s2) is s1 ‘alphabetically’ < s2 (and similarly

string<=, string>, etc)

Character operations

● (char-upcase c) returns uppercase equivalent (-downcase
for lowercase)

● #\c is used to represent the character literal c
● (char-code c) returns the ascii for the character
● (code-char n) returns the character whose ascii is n
● (char< c1 c2) is c1 alphabetically < c2? (and similarly for

char<=, char>, etc)
● Special chars: #\Backspace, #\Space, #\Return, #\Tab

Symbols

● Symbols are essentially identifiers, e.g. x
● we can check if something “is” an identifier using symbolp
● we can pass symbols as parameters, e.g. (foo ‘x)
● We can see if a symbol is in use with (boundp x), which

returns true if we’ve defined a variable x or (fboundp x)
which returns true if we’ve defined a function named x

● Later we’ll associate and use properties we can associate
with symbols

Creating and setting variables

● The defvar function is used to declare and initialize a
(more-or-less) global variable
(defvar x “foo”)

(defvar y 104)

● The setf function is used to change a variable value
(actually also declares the variable if we didn’t defvar it)
(setf x 23.5)

● Note that variable types are dynamic, not fixed
● Of course, variables are not “pure” in a FP view

Constants

● We can also create/initialize constants, e.g.
● (defconstant Pi 3.14)
● Many data types have pre-defined constants representing

things like the maximum value, precision, etc
● e.g. most-positive-double-float (biggest real), most-

positive-fixnum (biggest int), most-negative-fixnum, etc

Output with format function

● The format function is used to display output
● E.g. to display “blah blah blah” and a newline (~%) we

would use (format t “blah blah blah~%”)
● Format returns nil when used like this
● To insert a variable value into a string for display, we use ~A

as a placeholder (like %d or %f in C++ printfs) and put the
actual value to use as an extra parameter, e.g.
(format t “the value of x is: ~A~%” x)

(format t “x is: ~A, y is ~A~%” x y)

Building strings with format

● We can get format to build and return a string instead of
displaying it, done by using nil instead of t as the first
parameter, e.g. suppose x contains value 10:
(format nil “we are working with value ~A” x)

● Would create and return the string
“we are working with value 10”

Creating/using executable scripts

● You can put lisp code in a file with a .cl extension and run it
from the command line, but the first line of the file must be
#! /usr/bin/gcl -f

● Remember to make the file executable with chmod, e.g.
chmod u+x filename.cl

● Then run it much like other executables:
./filename.cl

● One file can load code from another (like a #include):
(load “filename”)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

