Gnu common lisp (gcl)

* We’'ll spend the first half of the course examining common
lisp in detall, I've posted a ton of code and discussion at

cscl.viu.ca/~wesselsd/courses/csci330/code/lisp/
* Will use the gcl interpretter, /usr/bin/gcl

* Can be used interactively (type gcl on the command line) or
can create lisp scripts (begin with #! /usr/bin/gcl -f)

* Is very much a hybrid language, will try to lean towards
functionally pure solutions, but in places procedural
approaches just make far more sense



A few basics for common lisp

* Everything is a function, even “procedural” actions like
declaring a variable:

(defvar x 10) ; defines x, initializes to 10
; single-1ine comments, to the right of semi-colon

 The name of the function is the first thing inside the
brackets, e.g. (sgrt 67.6) would be like C-style sqrt(67.5)

* Functions always return a value (default is nil)



Using the interpretter

« Start the interpretter by typing gcl on linux command line

* When it is waiting for you to enter a function call, it will show
the > as a prompt

* When you type in a function call, it will run the function and
display the returned result then give you another prompt e.qg.

>(sqrt 25)
25
>



Working In the interpretter

* Run the quit function to exit back to linux, I.e. (quit)

 |f a function call crashes, it will print an error message, give
you some numeric choices, and give a nested prompt like >>

* Look for the one with the message “Return to top level” and
enter its number (typically 1) to get back to normal

* You can load a file full of function definitions using
(load “filename”)



Functions and parameters

* Note that things like + and — are functions, called like other
functions, e.g. (+ 10 25) will return 35, (- 6 2) will return 4

* Some functions can accept as many parameters as you
like, e.g. (+ 510 3 1) will return 19

* You can compose function calls as deeply nested as you
like, e.g. (+ (* 53) (- 10 1)) would give 24



Input using the (read) function

* (read) waits for the user to type in something, reads and
returns it, can enter type the lisp interpretter recognizes:

* 75.5 would be recognized as the floating point value
112 would be recognized as the integer value

* “foo” would be recognized as the text string foo

« foo would be treated as a symbol (identifier)

* (10 20 30) would be treated as a list of 10 20 30

* tis the boolean value true, nil is treated as false

« #\frepresents the character f



More experimentation

* (+ (read) (read)) would wait for the user to type in two
values, add them together, and return the result

* You'll get a crash if you try to use invalid data types for an
operation (e.g. If you try to use + on text)

* There are lots of built in data types and functions for each,
we’ll explore at least some of them in the next few weeks




Basic operators

 The common math functions are + - / * min max mod log
sgrt sin cos tan floor ceiling random etc, (expt x y) Is used
to raise x to the powery

« The comparison operators are < <= > >= = /=

* Checking equality is a little tricky because of the possibility
of things being of different types, e.g. (= X y) crashes if one
of them IS non-numeric



Equality checking

(equal x y) does structural comparison to see if the contents
are equivalent (e.g. two different lists but with matching
Internal values)

(equalp x y) checks for equivalence (e.g. 3 and 3.0)

(eqgl x y) checks if they both refer to the same exact item, or
If one is a variable, one is a literal, and their values match

(eq x y) checks if they both refer to the same exact item



String operations

Many many string functions are available, including:
(length s) returns the length (in characters)
(elt str i) returns the ith character of str

(concatenate ‘string s1 s2) returns a string with the
contents of sl followed by s2

(string< sl s2) is sl ‘alphabetically’ < s2 (and similarly
string<=, string>, etc)



Character operations

* (char-upcase c) returns uppercase equivalent (-downcase

for lowercase)

e #\c Is used to represent the character literal c

* (char-code c) returns t
* (code-char n) returns t

 (char<clc2)isclalp
char<=, char>, etc)

ne ascii for the character
ne character whose ascii IS n

nabetically < c2? (and similarly for

e Special chars: #\Backspace, #\Space, #\Return, #\Tab



Symbols

 Symbols are essentially identifiers, e.g. X
* we can check if something “is” an identifier using symbolp
* we can pass symbols as parameters, e.g. (foo ‘X)

* We can see if a symbol is in use with (boundp x), which
returns true If we've defined a variable x or (fooundp x)
which returns true if we’ve defined a function named X

* Later we’ll associate and use properties we can associate
with symbols



Creating and setting variables

The defvar function is used to declare and initialize a
(more-or-less) global variable

(defvar x “foo”)

(defvar y 104)

The setf function is used to change a variable value
(actually also declares the variable if we didn’t defvar it)
(setf x 23.5)

Note that variable types are dynamic, not fixed

* Of course, variables are not “pure” in a FP view



Constants

* We can also create/initialize constants, e.g.
* (defconstant Pi 3.14)

 Many data types have pre-defined constants representing
things like the maximum value, precision, etc

* e.g. most-positive-double-float (biggest real), most-
positive-fixnum (biggest int), most-negative-fixnum, etc



Output with format function

* The format function is used to display output

* E.g. to display “blah blah blah” and a newline (~%) we
would use (format t “blah blah blah~%")

e Format returns nil when used like this

* To insert a variable value into a string for display, we use ~A
as a placeholder (like %d or %f in C++ printfs) and put the
actual value to use as an extra parameter, e.g.

(format t “the value of x is: ~A~%" Xx)
(format t “x i1s: ~A, y 1S ~A~%" X y)



Building strings with format

* We can get format to build and return a string instead of
displaying it, done by using nil instead of t as the first
parameter, e.g. suppose x contains value 10:

(format nil “we are working with value ~A” x)

* Would create and return the string
“we are working with value 10”



Creating/using executable scripts

You can put lisp code in a file with a .cl extension and run it
from the command line, but the first line of the file must be

#! /usr/bin/gcl -f

Remember to make the file executable with chmod, e.qg.
chmod u+x filename.cl

Then run it much like other executables:
./filename.c]l

One file can load code from another (like a #include):
(Toad “filename’)



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

