

CFGs and syntax

● Having established a list of tokens, we need to describe the
syntax rules for valid ways to string them together
● Our CFG will describe the ways in which parts of a program
are defined in terms of sequences of token types, e.g. the
syntax rules for variable declarations, the syntax rules for
assignment statements, etc
● For each component that can be built, we’ll provide rules for
all the different valid forms of construction
● We’ll borrow the yacc syntax for our CFG rules

Basic rule format

● A rule shows the name for the type of component being
described (e.g. var_declaration) then a : then the sequence of
token types required, then end the rule with a ;

● e.g. suppose we had defined tokens named IDENTIFIER, INT,
CHAR, FLOAT, SEMICOLON, then rules might look like
data_type: CHAR ;

data_type: INT ;

data_type: FLOAT ;

● Components can be built up of other components
var_declaration: data_type IDENTIFIER SEMICOLON ;

Collapsing rules with or |

● In cases where there are multiple ways to build a
component, we can use a single rule and separate the
different constructions with | (or)
data_type: CHAR ;

data_type: INT ;

data_type: FLOAT ;

● Could be replaced with
data_type: CHAR | INT | FLOAT ;

Describing a program components

● We’ll have a name for each component, which it will either
be a token or a non-terminal component composed of a
sequence of tokens

● Non-terminals are used to describe parts of the program in
abstract terms, e.g. to describe a for loop, or a function
declaration, or a variable declaration, etc

● We’ll have a generic starting non-terminal to describe the
entire program, e.g. something like program or start

● Our rule set has to describe all the ways to get from the
starting non-terminal to a final valid sequence of tokens

Example: a simple language

● Suppose our tokens are: identifiers (one or more alphabetic), positive
integers (one or more digits), an assignment operator (=), the
keywords begin and end, and the addition operator (+), the period (.)

● Assume we have a regex for each, our CFG uses names for the token
types: IDENTIFIER, INTEGER, ASSIGN, BEGIN, END, PLUS, STOP

● Programs start with begin, finish with end, and can have one or more
assignment statements inside

● Assignment statements look like identifier = expression .
● Expressions can be integers, identifiers, or expr + expr

Valid sample program

● A valid sample program might be
begin

x = 27 .

end

● Another valid program might be
begin

foo = 123 .

x = 17 + foo + 100 .

end

Developing a rule set

● Let’s use program as our starting non-terminal, assign_stmt
as the non-terminal for an assignment statement, and
expression as the non-terminal for an expression

● We’ll need a non-terminal to represent an entire list of
statements, so let’s use stmt_list

● We can now start building the rule collection
● Our program as a whole is a begin, followed by a

statement list, followed by an end, i.e.
program: BEGIN stmt_list END

Rule set, continued

● A statement list is a single assignment statement, or an
assignment statement then more statements
stmt_list: assign_stmt | assign_stmt stmt_list

● An assignment statement is an identifer, the assignment
operator, an expression, and a period
assign_stmt: IDENTIFIER ASSIGN expression STOP

● An expression is an identifier, an integer or expr + expr
expression: IDENTIFIER | INTEGER |

 expression PLUS expression

The whole grammar

● Thus our complete grammar (assuming we’ve handled the
tokens’ regular expressions separately) is:
program: BEGIN stmt_list END

stmt_list: assign_stmt | assign_stmt stmt_list

assign_stmt: IDENTIFIER ASSIGN expression STOP

expression: IDENTIFIER | INTEGER |

 expression PLUS expression

Derivations: checking validity

● To see if a program is valid under a grammar, we (or the
tool) searches for a way to generate that program using the
grammar rules

● If a program cannot be generated under the grammar rules
then it cannot be a valid program

● If a program can be generated under the grammar rules,
then the sequence of rules applied tell us what the
components of the program are (e.g. a variable declaration,
followed by a function definition, followed by a function call)

Derivation example
● A derivation for our first sample program

begin

x = 27 .

end

● The steps in the derivation would be
Program -> BEGIN stmt_list END

stmt_list -> assign_stmt

assign_stmt -> IDENTIFIER ASSIGN INTEGER STOP

And, for the regular expressions resolving the tokens:
IDENTIFIER -> x ASSIGN -> =

INTEGER -> 27 STOP -> .

Derivation example 2

● Consider our second program
begin

foo = 123 .

x = 17 + foo + 100 .

end

● The derivation steps might start like
program -> stmt_list

stmt_list -> assign_stmt stmt_list

stmt_list -> assign_stmt

Deriv example 2 continued

● For the first assignment statement
assign_smt -> IDENTIFIER ASSIGN expression STOP

expression -> INTEGER

● For the second assignment statement
assign_stmt -> IDENTIFIER ASSIGN expression STOP

expression -> expression PLUS expression

● Then (arbitrarily) resolving the expressions left-to-right
expression -> INTEGER

expression -> expression PLUS expression

expression -> IDENTIFIER

expression -> INTEGER

Derivation trees, program meaning

● We can also represent the derivations as a tree, e.g.
program

BEGIN ENDstmt_list

assign_stmt stmt_list

assign_stmtIDENTIFIER
ASSIGN

expression

STOP

INTEGER

IDENTIFIER

ASSIGN
expression

STOP

expression PLUS
expression

INTEGER
expression PLUS expression

IDENTIFIER INTEGER

foo

x

123

17
foo 100

= .

=
+

.

+

Ambiguous grammars

● If there is more than one way to generate a particular
program under the grammar then there are multiple
possible interpretations about what the structure of the
program is

● The grammar is called ambiguous
● Not a good thing: e.g. one compiler might pick one

derivation while a different compiler picks another, and the
same source code could thus produce executables that
behave differently

Example: ambiguous grammar

● We can demonstrate our sample grammar was ambigous
by showing a second, different, valid derivation tree for the
program from example 2

● The difference will be in the expression for the second
statement: the first time we expanded the expression non-
terminals from left to right, this time we’ll expand them in
the opposite direction

Different expression derivations

expression

expression PLUS expression

INTEGER
expression PLUS expression

IDENTIFIER INTEGER

17

foo 100

+

+

expression

expressionexpression

expression expression

PLUS

PLUS
INTEGER

INTEGER IDENTIFIER
+

+

17 foo

100

Meaning: 17 + (foo + 100) Meaning: (17 + foo) + 100

Eliminating ambiguity

● We can structure our grammar rules to enforce which
terms to expand next, e.g. instead of expr -> expr + expr
we could use

● Expr -> expr PLUS INTEGER | expr PLUS IDENTIFIER
● thus it would finalize the term to the right of the +, so

foo+3+x would be expression

expression IDENTIFIERPLUS

expression PLUS

IDENTIFIER

INTEGER
x

3

foo

+

+

Order of operations: associativity

● the grammar rules we pick must reflect our desired order
of operations, both precendence and associativity

● expr -> expr PLUS INTEGER implies the rightmost PLUS is
evaluated last, which means order of evaluation is left to
right (typically what we want)

● expr -> INTEGER PLUS expr implies the leftmost PLUS is
evaluated last, i.e. + operations would evaluate right to left
(not usually what we want for +, but might be the desired
order for assignment, e.g. for things like x = y = z;)

Order of ops: precedence

● We want higher precedence operations to be “lower” in the
derivation tree, so they get performed first, e.g. for x+y*z
what we want is effectively x+(y*z), and for x*y+z what we
want is effectively (x*y)+z

● To get this effect, we can create separate non-terminals for
the different precedence levels of expression, and have
the grammar rules finalize the lower precedence
operations earlier in the derivation

Example: + and *

● We’ll introduce two expression types: add_expr and
mult_expr, and have our derivations process every
add_expr first so they’re “higher” in the tree
expr -> add_expr

add_expr --> add_expr PLUS mult_expr

 | add_expr PLUS mult_expr

 | mult_expr

● ie there will be no way for a mult_expr to lead back to an
add_expr, so our derivations are forced to deal with every
PLUS before any MULT

Example + and * continued

● Now we can process the mult operations
mult_expr --> mult_expr MULT simple

 | simple

Simple --> INTEGER

 | IDENTIFIER

● Note that if an expression was just an integer (or just an
identifier) the derivation now goes
expr -> add_expr -> mult_expr -> simple -> INTEGER

Example: derivation tree

● Consider v + w * x * y + z add_expr

mult_exprPLUSadd_expr

simple

IDENTIFIER

z

+

mult_exprPLUSadd_expr

mult_expr

simple

IDENTIFIER
v

+

mult_expr MULT simple
*

IDENTIFIER
y

mult_expr MULT simple
*

x

simple
IDENTIFIER

IDENTIFIER
w

Adding handling of parenthesis

● Generally the () are regarded as highest precedence, and
working from the “outside” in, so these have to be reflected in our
grammar rules

● For our “simple” rule from the previous example, we can add our
bracket checker
Simple --> INTEGER

 | IDENTIFIER

 | LBRACKET expr RBRACKET

● Thus the content inside the brackets is treated as a normal top-
level expression, assuming LBRACKET and RBRACKET are “(“ and “)”

“Real” languages

● You can see the lex tokenization for C at
www.lysator.liu.se/c/ANSI-C-grammar-l.html

● Similarly, you can see the yacc syntax parsing for C at
www.lysator.liu.se/c/ANSI-C-grammar-y.html

● While it takes some time to follow through the sequences,
the ideas have all been covered!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

