

Function representation

● Functions in lisp are represented as lists with specific formats
● (function fname) returns the list representing the function
● Three different formats, based on how the function was created
● Functions can be created with defun, lambda, or labels
● Each format starts with a special symbol identifying the format
● Two formats contain a trio of environment lists, which provide
information such as what variables/values were visible at the point
of the function creation, the point of call, etc

The defun format

● Functions created with defun start with the symbol
‘lambda-block, followed by the function name, parameter
list, and body, e.g.
(defun g (x y) (* x y))

● For g above, (function g) would return the following list
(lambda-block g (x y) (* x y))

● We could thus write code to look at the innards of g:
(format t “param list of g is: (nth 2 (function g)))

The lambda format

● Functions created with lambda start with the symbol
‘lambda-closure, followed by the parameter list, followed
by the body
(lambda (x y) (* x y))

● If run at the global scope, this returns the list
(lambda-closure () () () (x y) (* x y))

● The three empty lists at the front are the environment lists
● If we ran lambda from inside another block then they

would contain lists of what was defined/visible in that block

Caution about environment lists

● It is entirely possible the environment lists will include
cyclic references, so if you try to display or print them you
get infinite output

● Remember our trick for safe printing of cyclic lists:
(let ((*print-circle* t))

 (format t “~A~%” myCyclicList))

Labels format

● Local functions can also be defined in a labels block (much
like local variables in a let block), e.g.
(labels ((h (x y) (* x y)))

 ; can call h in the block, we’ll just return form

 (function h))

; this would return the following list:

(lambda-block-closure (**) (**) (**) h (x y) (* x y))

● The three (**) are the environment lists, what they contain
will depend on the enclosing blocks

Parsing the form of a function

● If we’ve got the list representing a function, the symbol at
the front tells us which format it is, and thus if we should
expect to find the three environment lists and/or a function
name before the parameter list

● (everything after the parameter list is the function body)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

