Function representation

* Functions in lisp are represented as lists with specific formats

* (function fname) returns the list representing the function

* Three different formats, based on how the function was created
* Functions can be created with defun, lambda, or labels

e Each format starts with a special symbol identifying the format

e Two formats contain a trio of environment lists, which provide
Information such as what variables/values were visible at the point
of the function creation, the point of call, etc

The defun format

* Functions created with defun start with the symbol
‘lambda-block, followed by the function name, parameter
list, and body, e.q.

(defun g (x y) (* x y))
* For g above, (function g) would return the following list
(Tambda-block g (x y) (* x vy))

* We could thus write code to look at the innards of g:
(format t “param Tist of g is: (nth 2 (function g)))

The lambda format

* Functions created with lambda start with the symbol
‘lambda-closure, followed by the parameter list, followed
by the body

(Tambda (x y) (* x y))

* |f run at the global scope, this returns the list
(lambda-closure () (O O (xvy) (* x y))

* The three empty lists at the front are the environment lists

* |f we ran lambda from inside another block then they
would contain lists of what was defined/visible in that block

Caution about environment lists

* |tis entirely possible the environment lists will include
cyclic references, so if you try to display or print them you
get infinite output

 Remember our trick for safe printing of cyclic lists:

(let ((*print-circle* t))
(format t “~A~%" myCyclicList))

Labels format

* Local functions can also be defined in a labels block (much
like local variables in a let block), e.g.
(labels ((h (x y) (* x y)))
; can call h in the block, we’ll just return form
(function h))
; this would return the following Tist:
(Tambda-block-closure (**) (**) (**) h (xy) (* x y))

* The three (**) are the environment lists, what they contain
will depend on the enclosing blocks

Parsing the form of a function

* |f we've got the list representing a function, the symbol at
the front tells us which format it is, and thus if we should
expect to find the three environment lists and/or a function
name before the parameter list

* (everything after the parameter list is the function body)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

