Function definitions (defun)

 The function used to define other functions is called defun
* |t expects three or more parameters:

 The first is the name of the function

* The second is the parameter list

* The remaining parameters are treated as the sequence of
function calls to make (the body of the function)

* e.g. a function to return the square of x (nil for non-numbers)
(defun square (x) (if (numberp x) (* x x) nil))




Documentation strings

e [tis common to make the first statement in a function
simply a string, like a one-line help, e.g.

(defun foo (x)
“foo just returns whatever you passed to it”

X)
* To look up the documentation string for a function:
(documentation ‘foo ‘function)



Multiple statements in a function

* Not “pure” f.p., but if a function body consists of multiple
statements it will execute each in sequence, then the
function returns the value of the last statement run

(defun multByUservalue (x)
“gets a value from the user & return that * x
(format t “Enter a number: )

(* x (read)))



Type checking on parameters

In a function one of the first things we typically do is check
the passed parameters were actually of the right types

(defun intpow (x y)
“returns xAy 1if both are integers, otherwise nil”
(cond
((not (integerp x)) nil)
((not (integerp y)) nil
(t (expt x y))))



Setf and defvar inside a function

 Variables declared with defvar are not local to the function,

don’t use it inside a function (we’ll look at local vars using
let blocks)

* Remember that if you use setf on an undeclared variable it
acts like a defvar

* |f you use setf on a parameter then it changes the local
value of the parameter (generally ok, as long as that’s
what you meant to do of course)



Local variables using let blocks

 Let blocks let us define and Initialize a set of local variables,
and use them within a sequence of lisp statements

* Letis still just a function, its return value is the value returned
by the last statement in the block

(Tet
(a5 (b “foo”)) - 1ist of local vars, a=1l, b="foo0”
(format t “b is ~A~%") ; first statement prints “b is foo”
(* a a)) - last statement returns 25

* can be used anyplace a lisp function call can be made



Typical function layout

1st line Is documentation string, rest of body is a let block with
local vars, body of let is a cond, starts with error checking

(defun foo (a b )
“foo does stuff”
(let
(Canswer 42) (why “ Y!”))
(cond
(Cequal a b) ©)
(t nil))))




Other options coming later

* special: for dynamically scoped variables
* &optional: to give default values to optional parameters

» &rest: to allow any number of parameters to be passed and
processed

* &key: to allow keyword parameter passing instead of positional

* Values: allows a function to return multiple values (and nth-
value to capture specific ones)



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

