

Dynamic memory issues
● Runtime allocation/release requests for chunks of memory
from outside call stack (generally “heap” space)
● Might be programmer specific requests (e.g. new/delete,
malloc/calloc) or implicit requests (e.g. on creation of a new
object)
● Allocated resources must be accessible within the program,
need to be freed after released, and need to prevent misuse
● How are responsibilities divided between programmer and
system?

References vs pointers

● As discussed in pointers section, references hide implementation
details from programmer, all responsibility for
request/access/release dealt with system side

● Pointer-based systems put control (and responsibility) in hands of
developer, powerful but risky

(smart pointers an attempt to bridge the gap)
● For ptrs or refs, system needs to maintain a pool of available

memory chunks, find and allocate chunks to fill requests, and return
chunks to the pool once released

Pointer-based issues

● Wild pointers: programmer uses an uninitialized pointer as if
memory had already been allocated through it

● Invalid pointers: programmer accesses memory through pointer
containing an invalid address (out of range, violates alignment
boundaries, violates permissions)

● Dangling pointers: programmer accesses memory through pointer
after that space has been released/deallocated

● Memory leaks: programmer neglects to deallocate memory once
done with it, and/or loses last pointer that references it

Resource allocation/release

● System must keep track of memory available to be allocated
(memory pool)

● On request, system must find appropriate chunk of memory and
remove from pool, give access to program

● On release, system must return chunk to pool
● Allocation/deallocation needs to handle allocate/release requests

quickly, but also to organize memory pool in a way that minimizes
fragmentation (carving memory into many many chunks too small to
be useful for most requests)

Garbage collection

● Ideally, system recaptures memory and returns to pool once it is no
longer in use by the program

● Eager approaches: recapture asap once memory is no longer needed
(e.g. reference counts)

● When needed: delay recapture until we reach a point where we can no
longer service incoming requests, then go through and recapture
everything available

● Periodic: run recapture routines at fixed intervals (or when needed)
● On demand: run recapture routines at programmer request

Garbage collection impact

● Need some memory overhead to track what is/is not in use
● Need some cpu overhead to update what is/is not in use, and to actually

perform recapture
● Cpu delay can be significant if recapture needs to explore many chunks of

memory, application is paused while this runs (can give application
appearance of freezing or stuttering)

● Which garbage collection approach is chosen determines when the recapture
(and application pauses) takes place, and how much control developer has
over that

● Significant implications for systems that need to run in/close to real time

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

