

Higher order functions

● Functions that take other functions as parameters
● Easily supported in languages that are dynamically typed
and where functions treated as a type of data
● More complex in statically typed languages where functions
are not inherently a data type (like C/C++, need to resort to
function pointers)
● How does type checking work for passed function?

Lisp

● we’ve looked at lisp, where we can easily pass functions
and where callee can check passed item at run time to see
if it really is a function

● Variety of built-in mechanisms to support calling the
passed function on other data

● Type checking is done at run time, as with rest of lisp, so
potential type issues deferred until point where relevant
data is used on invoked function

C / C++

● Function identifiers are actually pointers to the location in memory where the relevent executable
instructions are stored

● Can pass name of one function to another, as long as the profile (number/type/order of parameters)
of the actual parameter of the passed function matches the profile of the corresponding parameter

● sample syntax

void higherOrder(char (*func)(int, double)) {

Char c = (*func)(10, 3.14);

}

func is the function pointer, int, double are parameter types it is expecting, and char is the return
type, sample call to higherOrder might be

C = higherOrder(somefunction)

C++ and templates

● If using C++, we can make the profile for the formal parameter
more flexible by giving some or all of its parameters/return type
templated types

● Here we make one of the parameters a templated type, can
pass any function that returns a char and takes two
parameters, the second of which is a double

template <class T>

void higherOrder(char (*func)(T, double));

	Slide 1
	Slide 2
	Slide 3
	Slide 4

