Homoiconic languages, self-parsing

* A language is homoiconic if code written in it also forms valid
data under the language

* This means you can effectively “see” the internal
representation just by looking at the source code

* Lisp is a good example, where you can see your source
code as a lisp list, and your lisp code can read, manipulate,
and generate lisp code

» Other homoiconic languages include scheme, racket,
closure, mathematica, wolfram, julia, prolog, snobal, tcl, ...

Parsing lisp in lisp

« We'll build up a simple translator, that takes a list of lisp
statements and builds a list of strings describing them

« We’'ll have a recursive function, interpretter, go through the
list and translate one statement at a time (using function
intepret1) and add the resulting string to a list

* |n the beginning we’ll just handle a few kinds of
statements, but we could incrementally add support for
more and more types

Parsing lisp in lisp

e Our top level instruction to go through the list of
statements and build up a list of descriptions
(defun interpretter (statements)

(cond
((not (lisp statements)) nil)
((null statements) nil)
(t (cons (interpretl (car statements)
(interpret (cdr statements)))))

Interpretting a statement

* Qur interpret1 function takes a single statement and generates
the description string for it

* The function begins by looking at the data type for statement (is
it a function, is it a number, is it a list, etc)

 If the statement is actually a list then we’ll recursively analyze
that

« As a first pass we'll simply return a string for the type of the
statement (e.g. for a statement like (f x) it will just return
“function call” as the description)

» Later we can replace the strings with function calls that build
more accurate descriptions

interpret

(defun intepretl (statement)
(typecase statement
(function “function_call”)
(number “numeric_value”)
(string “text_string”)
; for lists, refer back to interpret to analyze contents
(Tist (list “Tist_of “ (interpret statement)))

; add more cases to cope with more of language
(t “something_else™)))

Trial run

* If we try interpret on (25 “foo” t (interpret 10)) we get

(numeric_value text_string something_else
(Tist_of (function_call numeric_value))))

* This is on the right track, but for a function call like
(interpret 10) we might want it to say something like

(function_call function_name numeric_val)

instead of
(Tist_of (function_call numeric_value)

Tweak for functions

(defun intepretl (statement)
(typecase statement
(number “numeric_value”)
(string “text_string”)
; introduce special intepret function for Tlists
(11st (InterpretList statement))

; add more cases to cope with more of Tanguage
(t “something_else”)))

interpretList

 Check ifitis a list or a function call
(defun interpretList (L)
(cond
((not (listp L)) nil)
((null L) “empty Tlist”)
; special handling of function calls
((typep (car L) ‘function)
(Tist “func_call (car L) (interpret (cdr L))))

; regular handling of a data list
(t (Tist “Tlist_of (interpret L)))))

Trial run 2

e Tryinterpret on (25 “foo” t (interpret 10)) again:

(numeric_value text_string something_else
(func_call INTERPRET (numeric_value)))

* This is pretty close, though we might want to get rid of the
brackets around INTERPRET's parameter list, e.g. using

(append (list “func_call (car L)) (interpret (cdr L)))

e Instead of
(Tist “func_call (car L) (interpret (cdr L)))

 We can add parsing for more language features by
expanding our typecase in interpret1, so that it calls a
custom function for each different possible item type

 We could expand the intepretList to recognize key lisp
keywords such as let, cond, if, etc where the function
name appears, and call custom interpret routines for each

« We could add file handlers, to read the data from .cl files,
and error handling etc

* Note the built in (read) function must be doing something
like this already....

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

