label blocks (local functions)

* Label blocks are much like let blocks, except that we’re
defining local functions instead of local variables

 We create a list of local functions which can be called from
anywhere in the “body” of the label block

* These support recursive calls

* It will be very common to put a let block inside a function
and then put a label block inside the let

Small example

* getNprint uses one local function to get a value from the user,
then another local function to display it
(defun getNprint ()
(Tet ((x ni1))
(label ; start list of lTocal functions
((getvalue ()
(format t “Enter something: “) (setf x (read))
(printvalue () (format t “x is ~A~%" x))) ; end of 1ist
(getvalue)
(printvalue))))

Recursion

 Lambda functions can’t be recursive since you can’t call them
by name, but label functions can be recursive

(defun foo (a)
(Tabel (; start of Tist of local functions
(print (n)
(format t “~A~%" n) (if (> n 0) (print (- n 1))))

) ; end of 1list of local functions

; start of “body” of Tlabel block

: 1f a looks ok then call print on it

(if (and (integerp a) (> a 0)) (print a))))

let-over-lambda-over-label

* recreate our buildCircle using local functions, the lambda
function can be a simple ‘dispatcher’ to call those

(defun circleBuilder
(&optional (xInit 0) (yInit 0) (rInit 1))

(Tet ((x 0) Cy 0) (r 0))

(Tabel ((setCoords (cvals))
(setRad (rval))
(getArea ())

(print OO)

Body of new buildCircle

- after the end of the local function defs,
; initialize the local variables from the params
(1f (realp xInit) (setf x xInit))
. etc ...
: then create the lambda “dispatch” function
(lambda (cmd &optional (arg nil))
(cond
(Cequalp cmd ‘print) (print))
(Cequalp cmd ‘radius) (setRad arg))
. etc ...)))))

Scoping and nesting

e The local functions aren’t visible outside the label block

(just like let’s local variables aren’t visible outside the let
block)

 Can nest as deeply as you like, e.g. a let inside a let inside
a labels inside a let inside a labels inside a ...

* Using a clear file layout and an editor with bracket
matching is a really good idea by this point!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

