

Static vs dynamic scope

● Our traditional scoping rules use static, lexical scoping:
● identifiers refer to most locally-defined version, e.g. var x:

● First see if x is defined in the current block
● Then check the block that encloses that one
● Then check the block that encloses that one
● ...
● Check to see if it is globally defined
● Finally, give up and say x is undefined

● nesting in the (static) source code shows which x will always
be used at that point in the code
● Dynamic scoping: which x is used may vary from run to run

Dynamic scope in general

● If x isn’t defined inside the function it is used in, then we
check if it was defined in the function that called us, and
then the function that called them, etc

● Thus which variables are visible depends on who called
who, which can be different from run to run:
● Suppose f defines a local variable x=10, then calls h

● Suppose g defines a local variable x=”foo”, then calls h

● Suppose h has no local x, but prints x anyway

● When f runs h prints 10, when g runs h prints foo

Dynamic scope in lisp

● Lisp supports dynamic scope, but we need to specify that
we want a specific variable treated as dynamically scoped

● defvar variables are always dynamically scoped
(defvar x “global”)

(defun h () (format t “using ~A~%” x))

(defun f () (let ((x “f”)) (h)))

(defun g () (let ((x “g”)) (h)))

(f) ; h will print “using f”

(g) ; h will print “using g”

(h) ; h will print “using global”

Dynamic scope beyond defvar

● For local variables, if we want them to be dynamically
scoped we declare them as special (for things called from
that block):
(let ((x 10) (y nil))

 (declare (special x))

 ... x is now dynamically scoped ...

)

Example: localized dynamic scope

● p relies on a dynamically scoped y
(defun p () (format t “using ~A~%” y))

● Let block with dynamically scoped y, calls p
(let ((y “special let”))

 (declare (special y))

 (p)) ; prints “using special let”

● Attempt to use p globally crashes
(p) ; y not special globally, p can’t find it

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

