hashes

* Hashes in lisp are basically a lookup table of key-value pairs
* can create/destroy tables
* can add/remove key/value pairs
* can check if key current present in table
* can update value associated with a key
* can look up value associated with a key
* can iterate through the pairs based on keys
* can collect list of values and/or list of keys
e can run a function on every key/value pair



Basic hash table functions

e create/return an empty table, here storing in var myTable
(setf myTable (make-hash-table))

Look up size of table (number of pairs)
(hash-table-count myTable)

add/update key value pair, k is my key, v is new value
(setf (gethash k myTable) v)

remove key/value pair
(remhash k myTable)

lookup value associated with key (nil if key not present)
(gethash k myTable)



What Iif nil values are ok?

« (setf result (gethash k myTable))

* |f result is nil we don’t know if value was really nil, or
whether there is no key-value pair for k

* gethash actually returns second value, t if found, nil if not,
(capture using nth-value or multiple-value-bind)
(multiple-value-bind (v status) (gethash k myTable)
(1f (status)
(format t “found value ~A~%" v)
(format t “no such key/value pair present~%")))



lterating through keys

e Special syntax set up through macros
(lToop for k being the hash-keys of myTable do
. . body of your loop, doing whatever with k, e.g.
(format t “next pair is ~A:~A~%" k (gethash k myTable)))

* Yes, that really is the actual syntax for the loop!

(assuming you want to use k as the variable for the next key and
myTable is the variable containing your hash table)



Collecting lists of keys, values, or both

Again, special syntax set up through macros

The following returns a list of the keys of myTable
(lToop for key being the hash-keys of myTable collect key)

Or, to get a list of the values
(lToop for key being the hash-keys of myTable collect
(gethash key myTable))

Or, to get a list of key/value pairs
(loop for key being the hash-keys of myTable collect
(1ist key (gethash key myTable)))



Running a function on each pair

* The function we want to run, e.g. myFunction, needs to
expect two parameters, the key and the value

* |t will get run on every pair, but the order of pairs is not
easily predictable

* We’'ll pass the function name and the table as parameters
to maphash (another ‘higher order’ function), e.g.

(maphash ‘myFunction myTable)



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

