Higher order functions

* As we saw earlier with apply and maphash, some functions
can accept other functions as parameters

(apply ‘somefunction ListOfArgs)

(maphash ‘somefunction HashTable)
» Sort is another example of a higher order function since we
pass the comparison function as one of the parameters, e.qg.

(sort ‘(10 3 5 22) ‘<)



When to use higher order functions

 As we’ve seen with sort, maphash, and apply, sometimes
we have an algorithm that is fairly uniform, but different
specific functions could be inserted in one spot, e.g.
sorting using <, or >, or string<, etc

« Sometimes we will have our lisp code build new functions
as it runs. We need a way to run these, but can’t put calls
into the source code because the functions don't exist yet,
SO we pass a variable containing the newly built function to
our higher order function



apply

* As we saw earlier this term, (apply f L) runs function f
taking its parameters from L, e.g.

(apply ‘+ ‘(10 20)) ; acts like (+ 10 20)
 Make sure you have valid operands before calling apply:

apply will crash if passed invalid parameters, and the
function being run may crash if the contents of L aren’t
suitable for that function



When would we use apply?

 |f the arguments we want to pass to a function are already
in a potentially long list, then apply can be very effective

« Even if we know the exact length of the list, something like
(apply ‘f L) is cleaner than something like

(f (nth 0 L) (nth 1 L) ... (nth i L))

 When f can accept any number of arguments (using &rest)
then apply can be the most effective way to go (as with our
final version of “smallest” in the &rest examples)




funcall

« funcall is similar to apply, except that we actually list all the
arguments individually, rather than as a list, e.q.

(funcall f x y z) ; acts like (f x y z)

e This is typically used in situations where f is passed to us
as a parameter or stored in a variable



eval

e Evalis similar to apply and funcall, but this time the entire
expression has been built as a list and we now want to run
that list like a command, e.q.

(eval ‘(+ xy z)) ; acts like (+ xy z)
* This foreshadows the idea that we’ll use lisp code to build
lists of lisp code, then execute them later, e.g.

(defvar a 10)
(defvar e (list ‘sqrt a)) ;*actually builds ‘(sqrt 10)
(eval e) ; runs (sqgrt 10)



Eval cont.

e Same snippet, but using symbol ‘a
(defvar e (list ‘sgrt ‘a)) ; builds ‘(sgrt a)
(defvar a 16)
(eval e) ; returns 4
(setf a 49)
(eval e) ; returns 7



map

 Map allows us to run a function a number of times, and
build a list, string, vector etc out of the results

* We specify what form the result should be in (e.g. ‘list), the
function to run (e.g. foo), and then provide a separate list
of values for each of the arguments the function expects

* e.g. suppose our foo expects 3 parameters, and we want
to run (foo 1 2 3) and (foo 10 17 4) and build a list of the
results. The call to map would look like:

(map ‘list ‘foo ‘(1 10) ‘(2 17) ‘(3 4))



« For functions that expect just a list, maplist runs on the list,
then the tail of the list, then the tail of that, etc, and build a
list of the results

(maplist ‘length ‘(10 20 30))
 Runs length on (10 20 30) and gets 3
 Runs length on (20 30) and gets 2

 Runs length on (30) and gets 1

Sees the empty list and stops

Finally returns (32 1)



mapcar

 Also for functions that expect just a list, mapcar runs the
function once on each element and builds a list of results

(mapcar ‘sqgrt ‘(16 4 169))
 Returns (4 2 13)




reduce

e Suppose we have a situation where we want to use a
value computed so far together with the next data value in
line, and come up with a new result

* e.g. smallest: we keep track of the smallest value so far,
and keep checking the next value in the list until we reach
the end

* Reduce lets you specify a function and a list of values, and
keeps running the function on the front two values and
replacing them with the new result



Reduce example

(reduce ‘+ ‘(10 5 17 20))

e runs (+ 10 5) and replaces them with the answer, now
(reduce ‘+ (15 17 20))

* runs (+ 15 17) and replaces them with the answer, now
(reduce ‘+ ‘(32 20))

e runs (+ 32 20) and replaces them with the answer, now

 just a single element left, 52, so returns that as the answer



Next steps

 Now that we can use higher order functions, we’'ll start
developing lisp code that writes lisp code

* We can have our scripts generate and (though higher
order functions) run new lisp functions or expressions

* We can create functions which analyze and rewrite
existing lisp code, then run the revised version

 We can combine this with let blocks to create class/object-
like behaviour in lisp



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

