

Higher order functions

● As we saw earlier with apply and maphash, some functions
can accept other functions as parameters

(apply ‘somefunction ListOfArgs)

(maphash ‘somefunction HashTable)

● Sort is another example of a higher order function since we
pass the comparison function as one of the parameters, e.g.

 (sort ‘(10 3 5 22) ‘<)

When to use higher order functions

● As we’ve seen with sort, maphash, and apply, sometimes
we have an algorithm that is fairly uniform, but different
specific functions could be inserted in one spot, e.g.
sorting using <, or >, or string<, etc

● Sometimes we will have our lisp code build new functions
as it runs. We need a way to run these, but can’t put calls
into the source code because the functions don’t exist yet,
so we pass a variable containing the newly built function to
our higher order function

apply

● As we saw earlier this term, (apply f L) runs function f
taking its parameters from L, e.g.
(apply ‘+ ‘(10 20)) ; acts like (+ 10 20)

● Make sure you have valid operands before calling apply:

apply will crash if passed invalid parameters, and the
function being run may crash if the contents of L aren’t
suitable for that function

When would we use apply?

● If the arguments we want to pass to a function are already
in a potentially long list, then apply can be very effective

● Even if we know the exact length of the list, something like
(apply ‘f L) is cleaner than something like
(f (nth 0 L) (nth 1 L) ... (nth i L))

● When f can accept any number of arguments (using &rest)
then apply can be the most effective way to go (as with our
final version of “smallest” in the &rest examples)

funcall

● funcall is similar to apply, except that we actually list all the
arguments individually, rather than as a list, e.g.
(funcall f x y z) ; acts like (f x y z)

● This is typically used in situations where f is passed to us
as a parameter or stored in a variable

eval

● Eval is similar to apply and funcall, but this time the entire
expression has been built as a list and we now want to run
that list like a command, e.g.
(eval ‘(+ x y z)) ; acts like (+ x y z)

● This foreshadows the idea that we’ll use lisp code to build
lists of lisp code, then execute them later, e.g.
(defvar a 10)

(defvar e (list ‘sqrt a)) ;*actually builds ‘(sqrt 10)

(eval e) ; runs (sqrt 10)

Eval cont.

● Same snippet, but using symbol ‘a
(defvar e (list ‘sqrt ‘a)) ; builds ‘(sqrt a)

(defvar a 16)

(eval e) ; returns 4

(setf a 49)

(eval e) ; returns 7

map

● Map allows us to run a function a number of times, and
build a list, string, vector etc out of the results

● We specify what form the result should be in (e.g. ‘list), the
function to run (e.g. ‘foo), and then provide a separate list
of values for each of the arguments the function expects

● e.g. suppose our foo expects 3 parameters, and we want
to run (foo 1 2 3) and (foo 10 17 4) and build a list of the
results. The call to map would look like:
(map ‘list ‘foo ‘(1 10) ‘(2 17) ‘(3 4))

maplist

● For functions that expect just a list, maplist runs on the list,
then the tail of the list, then the tail of that, etc, and build a
list of the results
(maplist ‘length ‘(10 20 30))

● Runs length on (10 20 30) and gets 3
● Runs length on (20 30) and gets 2
● Runs length on (30) and gets 1
● Sees the empty list and stops
● Finally returns (3 2 1)

mapcar

● Also for functions that expect just a list, mapcar runs the
function once on each element and builds a list of results
(mapcar ‘sqrt ‘(16 4 169))

● Returns (4 2 13)

reduce

● Suppose we have a situation where we want to use a
value computed so far together with the next data value in
line, and come up with a new result

● e.g. smallest: we keep track of the smallest value so far,
and keep checking the next value in the list until we reach
the end

● Reduce lets you specify a function and a list of values, and
keeps running the function on the front two values and
replacing them with the new result

Reduce example

(reduce ‘+ ‘(10 5 17 20))

● runs (+ 10 5) and replaces them with the answer, now
(reduce ‘+ (15 17 20))

● runs (+ 15 17) and replaces them with the answer, now
(reduce ‘+ ‘(32 20))

● runs (+ 32 20) and replaces them with the answer, now
● just a single element left, 52, so returns that as the answer

Next steps

● Now that we can use higher order functions, we’ll start
developing lisp code that writes lisp code

● We can have our scripts generate and (though higher
order functions) run new lisp functions or expressions

● We can create functions which analyze and rewrite
existing lisp code, then run the revised version

● We can combine this with let blocks to create class/object-
like behaviour in lisp

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

