

Misc lisp: (i) regular expressions

● basic pattern matching for regular expressions provided
 (si::string-match pattern str)

● returns position of first match (-1 if no match)
● ^ and $ match string start/end, . matches any char
● () to enclose a pattern, + * and ? to repeat patterns
● [] to specify any one of a set of chars, ^ to negate
● \ is the escape for special chars, e.g. \]
● in a normal string “\\” means the char \, so string-match needs a pair
of those to represent pattern \, i.e. needs string “\\\\”
● (si::re-quote-string str) inserts the extra \’s for you, e.g.
● (si::re-quote-string “a slash \\ string”) inserts two more \\’s

packages

● Similar to the idea of a namespace in C++
● When you bind/use a symbol it uses current package by default, can

refer to one in a different package using pname::varname
● Can specify you want to be able to use all the names from another

package (use package pname)
● Current package name is in variable si::*package*
● Can switch packages using (in-package pname)
● Can get list of all packages (list-all-packages)
● Create new package (make-package ‘pname :use ‘(common-lisp))

timing/sleep

● Current time/date (get-universal-time)
● Internal clock time (get-internal-run-time)
● See how long something takes to execute
(time (whatever))

● Pause a program for N seconds (sleep N)

Random number generator

● Seed random number generator first
(setf *random-state* (make-random-state t))

● For a random integer in range 0..N-1
(random N) ; N must be positive int

● For a random float between 0 and N
(random N) ; N must be positive float (not an integer)

Compiling lisp files

● Can compile a lisp file into an executable (large)
● Do not include the #! line in your file
● Have a main function where execution will begin and

identify the name of that function using
(defun si::top-level () (main))

In the interpretter, run the following

(compile-file “filename.cl”) ; creates filename.o

(load “filename.o”)

(si::save-system “exename”) ; saves exe with given name

Compiling lisp functions

● Can compile an individual function
(compile ‘funcname)

● Can compile and run lambda functions
(defvar f (compile nil ‘(lambda)))

(funcall f whatever)

● Can load other compiled lisp files and call their functions
(load “fname.o”)

● see asm for compiled functions

 (disassemble ‘fname)

catch/throw

● some exception handling through throw and catch
● define a catch block, can throw exceptions from inside
● throw exits a specified block with a chosen return value
(setf myBlockResult (catch ‘myblock

 do regular stuff ...

 (if (somecondition) (throw ‘myblock value))

 ... do more regular stuff ...))

● myBlockResult now holds either the normal result of the
block or the value that was thrown

gotos (tagbody/go)

● Lisp does actually support a form of goto, allowing you to
jump to any label within a tagbody block, e.g.
(tagbody

 do regular stuff ...

 MyLabel

 ... more regular stuff ...

 (if (somecondition) go MyLabel))

 ... and more regular stuff ...)

Recording lisp session (dribble)

● Can start/stop recording a lisp session using the dribble
function, putting the recorded i/o in a file
(dribble filename)

.. all std i/o gets recorded ..

... end the session with

(dribble)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

